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Abstract

This chapter critically examines the potential contributions of modern language models to
theoretical linguistics. Despite their focus on engineering goals, these models’ ability to acquire
sophisticated linguistic knowledge from mere exposure to data warrants a careful reassessment
of their relevance to linguistic theory. I review a growing body of empirical evidence suggesting
that language models can learn hierarchical syntactic structure and exhibit sensitivity to various
linguistic phenomena, even when trained on developmentally plausible amounts of data. While
the competence/performance distinction has been invoked to dismiss the relevance of such mod-
els to linguistic theory, I argue that this assessment may be premature. By carefully controlling
learning conditions and making use of causal intervention methods, experiments with language
models can potentially constrain hypotheses about language acquisition and competence. I
conclude that closer collaboration between theoretical linguists and computational researchers
could yield valuable insights, particularly in advancing debates about linguistic nativism.
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1 Introduction
The recent success of artificial neural networks in natural language processing has sparked renewed
interest in their potential to elucidate longstanding questions in linguistics. Modern neural networks
based on deep learning architectures and trained on linguistic data, called language models, now
match or exceed human performance on many language tasks once thought intractable for machines.
Historically, connectionist models were critiqued as merely statistical approximations of linguistic
behaviour, fundamentally unable to capture the underlying competence of human language users.
While the remarkable progress of modern language models has been largely driven by engineering
efforts rather than research goals, it nonetheless warrants a careful re-examination of the relevance
of neural networks for linguistics as a scientific field.

This chapter aims to critically examine what language models may contribute – if anything – to
theoretical linguistics. In particular, it considers whether we should take language models seriously
as models of language; or, more precisely, as models of human language acquisition and competence.
Section 2 provides a brief historical overview of statistical language modelling in natural language
processing research, from early experiments inspired by information theory to modern language mod-
els based on the Transformer architecture. Section 3 turns to the rich body of work in computational
linguistics investigating the linguistic knowledge of modern language models, with a particular focus
on syntax. This line of research involves probing the sensitivity of language models to syntactic
features through linguistically-informed experiments. The implications of these empirical findings
for theoretical linguistics are discussed in Section 4. This section examines three potential interpre-
tations of language models: as models of linguistic performance, competence, and acquisition. It is
often assumed language models merely capture patterns of usage rather than the abstract linguistic
competence underlying language. However, insights from computational linguistics increasingly sug-
gest that language models trained in plausible learning scenarios and tested in carefully controlled
conditions may serve as fruitful testbeds for evaluating linguistic hypotheses. In particular, language
models show promise as idealized model learners to test or constrain theories of language acquisition
and make headway on ongoing debates about linguistic nativism. Available evidence remains tenta-
tive, however; fully realizing the potential of language models to inform linguistic theory will likely
require embracing open-minded collaboration between computational and theoretical linguists.1

1This chapter is designed to accommodate readers with varying levels of background knowledge and interests.
Readers already familiar with the history of statistical language modeling may wish to skip Section 2. Readers who
are already well-acquainted in recent empirical work on language models’ linguistic abilities may also wish to skip
Section 3 and proceed directly to Section 4, which explores the theoretical and philosophical implications of this
research for linguistics. Those primarily interested in the debate surrounding language models as scientific models of
language may find that section most relevant.
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2 A brief history of statistical language modelling
2.1 Early efforts
Natural language processing (NLP) traces its origins to the late 1940s and early 1950s, with early
attempts to develop computer programs capable of processing and understanding human language.
This research programme was inspired by the advent of the first programmable digital computers,
raising hopes that complex linguistic tasks, such as language translation, could potentially be repli-
cated algorithmically. From the beginning, the history of NLP was marked by a tension between
two competing approaches: a stochastic approach influenced by information theory, and a symbolic
approach influenced by theoretical linguistics.

In 1948, Claude Shannon proposed a probabilistic model of communication, expressing the infor-
mation content of a message in terms of its probability (Shannon, 1948). Although Shannon’s work
focused primarily on telecommunication, his methods of measuring information entropy found appli-
cability in understanding linguistic phenomena. In fact, the first application of statistical methods
to NLP is credited to Shannon himself, who experimented with different techniques for predict-
ing the next letter in a sequence of English text based on the preceding letters (Shannon, 1951).
Shannon’s theory also inspired other researchers to tackle challenging problems in NLP through
statistical methods. In a memorandum published in 1949, for example, Warren Weaver proposed
to use information theory as a framework for machine translation (Weaver, 1955). By determining
the statistical regularities between two languages, Weaver postulated that one could find an optimal
mapping between them to enable translation.

Despite these early efforts, NLP research was initially dominated by symbolic rather than statis-
tical methods, as linguistic theory inspired efforts to explicitly encode linguistic rules for machines.
Noam Chomsky’s work was particularly influential on this development (Chomsky, 1957, 1965).
Rather than seeing language as a set of learned habits or responses to stimuli, Chomsky argued
that our ability to generate and understand an infinite number of sentences suggests that language
use must be involve the algorithmic manipulation of hierarchical symbolic structures according to
unconscious grammatical rules. On his view, these unconscious rules were acquired by language
learners through reliance on a posited innate language faculty, dubbed “universal grammar”, which
constrained the space of possible human languages. The idea that linguistic knowledge could be
viewed as an abstract deductive system inspired precise formalisms that could be translated into
symbolic rules for computers.

Many NLP projects adopted this linguistics-driven approach in the 1960s and 1970s, hand-
engineering complex symbolic rule systems to parse input and generate responses using limited
vocabularies. Terry Winograd’s SHRDLU, for instance, used a form of syntactic parsing to break
down English sentences into subject-verb-object chunks and translate them into action commands
in a simplified “blocks world” (Winograd, 1971). Other systems explicitly incorporated insights
from Chomskyan linguistics. LUNAR, for example, was designed to be a natural language interface
that could answer questions about Apollo 11 moon rock samples for NASA (Woods, 1973). Inputs
were processed using an “augmented transition network” inspired by Chomsky’s transformational
grammar, that could recursively apply transformation rules to parse English questions into a deep
structural representation.

While the symbolic approach was initially fruitful, it also showed significant limitations that
proved difficult to overcome. Rule-based NLP algorithms were labour-intensive to create, often
brittle in the face of linguistic variability, and struggled with the ambiguity inherent in natural
language. Although they could represent complex linguistic structures, their reliance on hand-crafted
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rules made them less flexible and adaptable to different languages and domains, and they often failed
to adequately model the complexities of semantic and pragmatic context that are integral to human
language understanding.

Another influential idea emerged in parallel from structural linguistics, which aimed to uncover
the rules and patterns that govern language as a system of interrelated symbols. In contrast with
Chomsky’s generative linguistics, structuralism focused on describing language as it is used rather
than specifying abstract rules of grammar. In this context, Zellig Harris suggested that words
appearing in similar contexts are likely to have related or overlapping meaning (Harris, 1954). This
claim, which came to be known as the distributional hypothesis, was aptly summarized by J. R. Firth
with the slogan “You shall know a word by the company it keeps” (Firth, 1957). Firth explicitly
acknowledged the influence of Wittgenstein’s conception of meaning as use, according to which the
meaning of a word is derived from its use in language, rather than from the object it refers to or the
mental representation it is associated with. Building on this intuition, the distributional hypothesis
states that the contextual meaning of words emerges from their place in linguistic environments and
habitual associations with other words. Firth also emphasized the importance of analysing large
samples of authentic language use to understand meaning, idiom, and lexicology – anticipating later
developments in statistical approaches to NLP.

These ideas reached fuller fruition through the development of quantitative methods to model
relationships between words. The work of Charles Osgood in psychology was a notable precursor in
this area (Osgood, 1952). Osgood hypothesized that by quantifying allocation of concepts along a
standardized set of dimensions, one could measure their meaning. His “semantic differential” method
involved presenting subjects with a concept (e.g., “dictator”) and a scale between two opposites
(e.g., “kind-cruel”). The subject would then rate where the concept falls on the scale. Repeating
this for many concepts on many scales located the concepts in a semantic space. A factor analysis
subsequently identified three main dimensions accounting most of the variance in ratings: evaluation
(e.g. good-bad), potency (e.g. strong-weak), and activity (e.g. active-passive).

Osgood’s “semantic differential” experiments introduced the important idea that meaning could
be represented geometrically in a multidimensional vector space, although it relied on explicit par-
ticipant ratings rather than distributional properties of words in a linguistic corpus. However, sub-
sequent research combined vector-based representations with a data-driven approach. Much of this
work was done to improve information retrieval: by representing documents as vectors whose di-
mensions correspond to words weighted by frequency, one could search and retrieve documents from
the similarities between their vectors (Salton et al., 1975). The idea of representing documents or
words as vectors in high-dimensional vector spaces, and using distance between vectors as proxy for
semantic similarity, would become a key principle of statistical approaches to language modelling
building on the distributional hypothesis.

Latent semantic analysis (LSA) emerged in the late 1980s as a more sophisticated method to
uncover latent semantic structure from text corpora (Deerwester et al., 1990). LSA represents
documents as vectors of weighted word frequencies, then applies a technique called singular value
decomposition to reduce the dimensionality of the resulting vector space, while preserving important
semantic information. Importantly, the relationships between words captured by the similarity
between their corresponding vectors in LSA reflect deeper semantic similarity rather than just surface
co-occurrence statistics. Indeed, the similarity between word vectors should not be confused with
the frequency or likelihood of words appearing together in the corpus. Rather, the distance between
vectors captures the similarity in the effects the words have on the meaning of the passages in which
they occur. Words that do not directly co-occur in the text can still have highly similar vectors if they
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affect passage meanings in similar ways. This allows LSA to detect semantic relationships between
words without relying solely on co-occurrence counts – including synonymy, antonymy, hypernymy,
and meronymy.

Interestingly, the success of LSA was not merely seen as an engineering achievement, but thought
to have implications for our understanding of human cognition. Thomas Landauer and Susan Du-
mais, two of the creators of LSA, took it to challenge nativist theories of language acquisition, arguing
that it provides an existence proof that a general statistical learning mechanism over large corpora
can rapidly acquire semantic knowledge on the scale of children’s vocabulary growth (Landauer and
Dumais, 1997). Specifically, they argued the high-dimensional vector representations learned by
LSA provide a potential computational mechanism to explain how learners can acquire so much
knowledge from limited linguistic input, by allowing small adjustments to the representation of each
word during new exposures to propagate across the lexicon, explaining rapid accumulation of vocab-
ulary. As we shall see, similar claims about language acquisition have been bolstered by the success
of modern language models.

2.2 Word embeddings models
Research on distributional semantics reached maturity with the development of word vector models
based on artificial neural networks (Bengio et al., 2000; Mikolov et al., 2013). The key insight be-
hind such models is that the distributional properties of words can be learned by training a neural
network to predict a word’s context given the word itself, or vice versa. Unlike previous statistical
methods, these neural models encode words into dense, low-dimensional vector representations also
known as word embeddings. The resulting vector space drastically reduces the dimensionality of lin-
guistic data while preserving information about meaningful linguistic relationships better than LSA.
Word embedding models demonstrate the ability of statistical methods inspired by the distributional
hypothesis to learn rich representations of lexical knowledge from unlabelled text. As the neural
network trains on large amounts of text, words with similar meanings and syntactic roles converge
to similar embedding locations that support predicting their shared contexts.

A particularly influential technique known as Word2Vec demonstrated the power of word embed-
ding models to capture both semantic and syntactic regularities from their training data (Mikolov
et al., 2013). One of the key insights from Word2Vec is that analogical relationships between words
could be captured by simple arithmetic operations on their vector representations in the vector space
of the trained model. For example, subtracting the vector for “man” from the vector for “king” then
adding the vector for “woman” would result in a vector closest to the vector for “queen” in the
space – implicitly capturing the idea that “man” is to “king” what “woman” is to “queen”. The
vector space of Word2Vec models also exhibits morphological relationships between word forms. For
example, the vector offsets between “walk” and “walked” versus “swim” and “swam” are parallel
in the vector space, suggesting it can capture regular rules of inflectional morphology (e.g.,“walk”
is to “walked” what “swim” is to “swam”). Relationships between derivationally related words can
also be captured. For example, even though morphemes like “-er” don’t occur as standalone units
in text, Word2Vec models appear to represent them implicitly, mirroring derivational morphology:
vector offsets akin to “walk” - “walker” + “swim” result in a vector closest to “swimmer”.

This ability of word embeddings models to represent nuanced lexical relationships points to their
potential to inform linguistic theory (Lenci, 2018). Classical approaches to lexical semantics often
treat word meaning as a combination of binary semantic features; for example, the word “bachelor”
carries the features [+human], [+male], [+unmarried] (Katz and Fodor, 1963). But modelling word
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meaning in this way seems intractable in practice, as the lexicon of any natural language contains a
dizzyingly large number of distinct word meanings (Baroni et al., 2014). Word embedding models
can automatically acquire meaning representations from corpus data, scaling up to large lexicons
in a way not feasible for manually created representations. They provide an empirically motivated
way to model meaning that captures gradience and flexibility; for example, they naturally represent
vagueness through graded similarities (Erk, 2022).

Word embedding models can be used in exploratory ways to uncover patterns in large-scale
distributional data like word similarities and nearest neighbours (Boleda, 2020). Specific linguistic
phenomena can be investigated by looking at distributional representations. For example, word
embeddings in models trained on linguistic data from different time periods can provide useful
insights about semantic change over time (Kim et al., 2014; Hamilton et al., 2016). Furthermore,
word embedding models can be used to evaluate linguistic hypotheses by translating them into
distributional terms and testing their predictions (Boleda, 2020). For example, Boleda et al. (2013)
tested the hypothesis that adjectives expressing modality (e.g., “alleged” or “possible”) are harder
to model compositionally than non-modal adjectives, by looking at distances between corresponding
vectors. Instead of confirming their hypothesis, they found that typicality of the adjective-noun
pairing was more predictive of compositionality, leading them to propose that composition relies
jointly on conceptual typicality and referential context (McNally and Boleda, 2017).

This line of research inspired ongoing efforts to combine insights from distributional semantics
with formal semantics (Erk, 2013; Boleda and Herbelot, 2016; Venhuizen et al., 2022). Formal seman-
tics excels at modelling phenomena like quantification, negation, modality, and logical inference but
struggles with lexical semantics and descriptive content. Distributional semantics has complemen-
tary strengths – it captures lexical and conceptual meaning very well through the statistical analysis
of large corpora, but cannot easily handle function words or logical entailments. This creates an
incentive to combine both approaches into an integrative semantic framework called “Formal Dis-
tributional Semantics”. However, this is challenging due to the fundamentally different theoretical
foundations of each approach. One strategy consists in enhancing formal semantics with distribu-
tional information that acts as a supplementary layer over logical form (Beltagy et al., 2013). An
alternative strategy starts instead from distributional semantics, and aims to reformulate logical
phenomena like quantification directly in terms of operations over distributional vectors, without
relying on an existing logic (Herbelot and Vecchi, 2015). Each strategy faces distinct challenges: the
former struggles to integrate distributional lexical knowledge into existing formal logics in a coherent
way, reconcile vector similarities with formal inference, and retain cognitive plausibility; the latter
has difficulty recovering logical phenomena like quantification directly from distributional spaces and
lacks a clear notion of reference. Nonetheless, Formal Distributional Semantics is a promising avenue
of research that vividly illustrates the relevance of distributional models to theoretical linguistics.

2.3 Language models
Despite their success in modelling salient aspects of lexical relationships, word embedding models
have several significant limitations. Firstly, they assign a single “static” vector representation to
each word type, which prevents them from modelling variations in word meaning based on con-
text or disambiguating homonyms. Secondly, they rely on “shallow” neural network architectures
(typically with a single hidden layer), which may limit their ability to capture complex hierarchical
relationships between words. Finally, these models fundamentally treat language as a mere “bag
of words,” disregarding information about word order. Being designed to model language at the
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level of individual words, they are ill-suited to represent complex linguistic expressions. While it is
possible to compute a vector representation for a complex expression by averaging the vectors of the
words it contains, this fails to capture information about compositional structure.

These shortcomings are addressed by modern language models based on deep neural networks.2
By contrast with shallow models, these neural networks have many hidden layers, affording them
greater representational flexibility (LeCun et al., 2015; Buckner, 2019). Unlike word embedding
models, they model the meaning of individual words in context, and can process complex whole
sentences or paragraphs while preserving information about word order and syntactic structure. In
recent years, these models have taken over virtually every corner of NLP, demonstrating unprece-
dented performance on a wide array of linguistic tasks that were previously challenging even for
task-specific models (Brown et al., 2020; OpenAI, 2023).

Virtually all modern language models use a deep neural network architecture called the Trans-
former (Vaswani et al., 2017). The most common variant of the Transformer (known as “decoder-
only” or “autoregressive” Transformer) learns from next-word prediction: given a sequence of words
𝑤1, 𝑤2, ..., 𝑤𝑖 passed as input to the model, it attempts to predict the subsequent word 𝑤𝑖+1.3 These
models are trained on a large amount of data, by sampling fixed-length sequences for next-word pre-
diction over and over again. When training begins, the model is no better than chance at predicting
the next word. Each time a prediction is made, however, it is compared to the word that actually
follows the input sequence in the training data. The difference – or “error” – between the model’s
prediction and the ground truth is then used to adjust the model’s internal parameters. These
adjustments are calculated such that they would decrease the prediction error if the same context
were encountered again. Through exposure to vast amounts of text, the model incrementally refines
its performance, learning to predict the next word in any context occurring in the training data.

The fundamental building block of the Transformer architecture is a remarkably versatile mech-
anism known as self-attention. In essence, self-attention allows the model to weigh the relative
importance of different words in the input sequence when predicting a new word. When a word
is processed through the self-attention mechanism, the model “attends” to all the preceding words,
gathering relevant information that might be spread out across the sequence. The mechanism as-
signs a weight (called “attention score”) to each of these words, determining how much each should
contribute to the current prediction. For instance, when predicting the verb in a sentence, the
model might give a high attention score to the verb’s subject, even if it is far back in the sequence.
Conversely, less relevant tokens – such as a distant conjunction or adverb – might receive lower
attention scores. Importantly, the allocation of these scores is not static; it is adjusted dynamically
based on the current prediction task. In practical terms, these attention scores are used to create
a weighted combination of the word vectors in the sequence, and this combination is then used to
predict the next word. This mechanism ensures that more important words have a larger influence
on the prediction, while less important words have a lesser influence.

Each self-attention module in a Transformer-based language model is called an “attention head”.
Language models do not contain a single attention head, but may have thousands of them.4 Each of

2See Millière and Buckner (2024) for an introduction to neural language models.
3This description is slightly simplified for the sake of exposition. To be precise, autoregressive Transformer models

process “tokens” rather than words. The input sequence is divided into these tokens through a process called tokeniza-
tion, aimed at maintaining a balance between computational efficiency and the capacity to represent diverse words,
including complex and less common ones. While many tokens do map onto whole words, others map onto sub-word
units that may or may not carve words at their morphologically meaningful joints. For instance, in GPT-3, the word
“linguistics” is tokenized into three separate units: “ling”, “u”, and “istics”.

4GPT-3, for example, has 9,216 attention heads: 96 heads in each of 96 layers (Brown et al., 2020). State-of-the-art
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these attention heads has trainable parameters, which means that they may specialize during training
to attend to specific kinds of dependencies between words. This mechanism allows language models
to avoid some issues that plagued previous techniques, like the inability to deal with long-range
dependencies or the difficulty in capturing ambiguity or context-sensitive influences on meaning. By
directly modelling relationships between all words in a sequence, regardless of their distance from
each other, Transformer-based language models are, in principle, particularly well-suited to induce
syntactic structure. Importantly, while attention heads themselves process all words in parallel
(i.e., they are “permutation equivariant”), information about word order is preserved through a
mechanism known as positional encoding.

Transformer-based language models have shown impressive capabilities with a very broad range of
tasks. They can generate fluent and grammatically well-formed text in natural language on virtually
every topic. Beyond free-form text generation, they achieve good performance at summarization,
paraphrasing, translation, information retrieval, sentiment analysis, and question answering, among
other classic NLP tasks. Importantly, they can do so just from being pre-trained on a vast corpus of
text with a next-word prediction learning objective, without task-specific fine-tuning (Brown et al.,
2020).

These results have inspired several research programmes in computer science, computational
linguistics and adjacent fields. A first set of issues relates to the systematic assessment of the
capacities and limitations of language models. In the linguistic domain, in particular, there are
ongoing efforts to investigate what kind of linguistic knowledge and competence, if any, can be
meaningfully ascribed to language models. A distinct but related set of issues concerns the potential
implications that experiments with language models may have for theoretical linguistics and devel-
opmental psycholinguistics. One particularly controversial issue is whether the apparent success of
language models in learning the syntax of natural languages without built-in syntactic knowledge
may challenge or constrain theories of language acquisition.

In what follows, I will consider each set of issues in turn. While discussing the putative linguistic
competence of language models raises fascinating questions about semantic competence (see e.g.
Bender and Koller, 2020; Søgaard, 2022; Piantadosi and Hill, 2022; Mollo and Millière, 2023), I
will focus more closely on issues related to syntactic knowledge that have more straightforward
implications for linguistics.

3 What do language models know about syntax?
Large language models like GPT-3 and GPT-4 hardly ever make grammatical mistakes. In fact,
these models can reliably generate whole paragraphs of syntactically coherent text adapted to the
style, tone, and language of the input. On the face of it, this seems to imply that they have effectively
learned the underlying rules and structure of natural language syntax from the linguistic data they
were trained on. This could be taken as preliminary evidence that, given sufficient parameters
and training examples, neural networks can acquire sophisticated knowledge about core aspects
of human language like hierarchical phrase structure and compositionality purely through exposure,
without explicit supervision. However, the mere fact that language models can generate grammatical
sentences, impressive as it may be, does not straightforwardly tell us whether they have genuinely
acquired structured knowledge about syntax. We ought to consider the possibility that they simply
rely on recognizing shallow statistical patterns observed in their enormous training data (Millière

models like GPT-4 plausibly have more, although this information is not publicly available (OpenAI, 2023).
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and Buckner, 2024). These models are undoubtedbly powerful statistical learners; but their capacity
for memorization and pattern matching could in principle explain their ability to apply common
grammatical constructions without assuming that they acquire a deeper syntactic competence.

An increasingly large body of work in computational linguistics investigates this question using
complementary strategies. We can distinguish three main methodological approaches: behavioural
studies focus on models’ responses to specific inputs (Figure 1 A); probing studies attempt to decode
information from models’ internal activations (Figure 1 B); and interventional studies attempt to
manipulate models’ internal states to determine how they causally influence behaviour (Figure 1 C).
These experimental strategies are largely inspired from cognitive science – particularly linguistics,
psychology and neuroscience – but adapted to the meet the specific challenges and opportunities of
studying computational artifacts rather than human subjects (Frank, 2023a; Millière, 2024).

Figure 1: Three methodological approaches to assess syntactic knowledge in language models

3.1 Behavioural studies
Behavioural studies focus on evaluating the linguistic abilities of language models in controlled
tasks targeting specific syntactic phenomena. The goal of these studies is to assess which linguistic
features models are sensitive to, and whether their behaviour aligns with human behaviour. This line
of research takes a psycholinguistic perspective, evaluating the implicit knowledge of neural networks
through experiments informed by human research – what we might call “linguistically oriented deep
net analysis” (Baroni, 2022).

3.1.1 Targeted syntactic tasks

A common approach to behavioural experiments consists in selecting or designing stimuli carefully
chosen to exhibit a target linguistic feature, and evaluating whether the target system is sensitive
to that feature. Linguists routinely use acceptability judgments to support inferences about the
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grammaticality of particular constructions, under the hypothesis that grammatical sentences tend to
be judged as more acceptable than ungrammatical ones (Schütze, 2011; Sprouse, 2018). Accordingly,
one may present sentences to a language model and assess whether its behaviour aligns with human
acceptability judgments. If the model can reliably detect acceptable sentences in a given category,
this may be taken as evidence that it is sensitive to the corresponding grammatical distinction.

Prompting language models to produce explicit grammaticality judgments has yielded mixed
results. Dentella et al. (2023) tested three variants of the language model GPT-3 on grammatical-
ity judgment tasks across eight linguistic phenomena, asking them directly whether sentences were
grammatically correct; they found above-chance but low overall accuracy, greater accuracy for gram-
matical than ungrammatical sentences, high response instability within items, and a yes-response
bias – in contrast to human controls. On the other hand, Ambridge and Blything (2024) prompted
GPT-3 to rate the grammatical acceptability of sentences on a 5-point scale, finding very high cor-
relation between the model’s explicit acceptability ratings and those of human adults for English
causative sentences.

However, most behavioural studies do not prompt language models to elicit explicit metalinguis-
tic judgments, as this approach has been shown to be unreliable and may lead to underestimating
their actual syntactic competence (Hu and Levy, 2023). For example, answering a yes/no ques-
tion about the grammaticality of a given sentence requires not just grammatical competence, but
also metalinguistic knowledge of what grammaticality means, and the ability to verbalize internal
sensitivity to syntactic features. As such, this approach imposes strong auxiliary task demands on
language models that complicate the interpretation of performance errors (Hu and Frank, 2024).

Instead, most behavioural experiments focus on minimal pairs of sentences that only differ with
respect to a specific syntactic phenomenon – such that one sentence is deemed grammatically ac-
ceptable while the other is not – and directly decode the probability assigned by language models
to a key word that differs across the pairs. Using this methodology, Hu et al. (2024) show that
Dentella et al. (2023)’s negative results should be strongly qualified: language models evaluated on
the same sentences in minimal pairs achieve at- or near-ceiling performance on most linguistic phe-
nomena tested, except for centre embedding, where humans also perform near chance; furthermore,
minimal-pair surprisal differences strongly predict human grammaticality judgments.5

A good example of this strategy is the assessment of sensitivity to subject-verb agreement, the
phenomenon in which the form of a verb must be congruent with the number and person of the
subject in a sentence. Subject-verb agreement in English arguably provides evidence for hierarchical
structure in syntactic processing, because the verb must agree with the head of the subject phrase
rather than the linearly closest noun. Since language models process language sequentially without
built-in hierarchical representations of syntactic structure, assessing their sensitivity to subject-verb
agreement is an interesting test of their general ability to learn syntactic rules. To rule out alternative
explanations of good model performance based on shallow heuristics, such as mere sensitivity to
linear order, it is common to make minimal-pair tasks more challenging by including attractors
in the stimuli. Attractors are chosen to have misleading features that interfere with the surface

5Leivada et al. (2024) and Dentella et al. (2024) object to the use of direct probability measurements on the
grounds that it does not allow for fair comparisons with human performance on acceptability judgment tasks. Indeed,
we cannot obtain equivalent probability measurements from human subjects, and grammaticality for humans is –
on their view – not a matter of relative comparison between sentences or of degree, but an absolute judgment about
whether a sentence violates grammatical rules or not. However, comparing relative probabilities assigned to minimally
different sentences does provide insight into models’ sensitivity to specific syntactic features. While grammaticality
may not be a matter of degree for individual sentences, the strength of preference between alternatives in a minimal
pair can reveal graded aspects of linguistic knowledge that align with human judgments (as shown by Hu et al. (2024)).
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properties of the sentence without actually influencing its grammaticality (at least for idealized
language users).

In a pioneering study, Linzen et al. (2016) tested subject-verb agreement in an early language
model based on a Long short-term memory (LSTM) architecture rather than the Transformer. They
selected naturally occurring present-tense English sentences from Wikipedia, including some sen-
tences containing agreement attractors – intervening nouns with a different number from the head
subject noun. For example, in the sentence “The keys to the cabinet are on the table,” the plural
noun phrase (“The keys”) governs the agreement with the plural verb (“are”). However, the in-
tervening singular noun phrase (“the cabinet”) acts as an attractor; while syntactically integrated
into the subject within a prepositional phrase, it creates a potential locality effect where the verb’s
proximity to a singular noun might lead to confusion about subject-verb agreement. Linzen and
colleagues fed the selected sentences word-by-word into an LSTM language model, comparing the
probabilities assigned by the model to the two forms of the focus verb (singular and plural). The
verb form that the model assigned the higher probability was selected as a proxy for grammaticality
judgments.

While supervised models trained with an explicit grammatical target (e.g., number prediction or
grammaticality judgments) achieved near-perfect accuracy on simple cases with no attractors, the
unsupervised language models trained purely on next word prediction faired worse (6.78% error rate).
The gap between supervised and unsupervised models widened with the introduction of an increasing
number of attractors. Performance slowly degraded for supervised models, only reaching an error
rate of 17.6% with four attractors; meanwhile, the language model did much worse than chance in
this most challenging setup. Importantly, these initial results do not straightforwardly translate to
more modern architectures for language modelling. Indeed, even small Transformer-based language
models like BERT (Devlin et al., 2018) tested in another study performed near-perfectly on the
same task, with no noticeable performance degradation on stimuli containing multiple attractors
(Goldberg, 2019).

A follow-up study by Gulordava et al. (2018) set out to control whether models might leverage
semantic and frequency-based cues rather than genuinely syntactic ones to achieve good performance
on tests of sensitivity to long-distance number agreement. In addition to selecting a set of long-
distance agreement constructions from treebanks in several languages, they also created “nonce”
versions of these test sentences by replacing all content words with random words that have matching
morphological features (inspired by Chomsky (1957)’s famous example “Colorless green ideas sleep
furiously”). This results in grammatical but meaningless sentences that remove potentially helpful
semantic and frequency cues from the task. The results show that language models based on a
recurrent neural networks (RNN) architecture achieve high accuracy on both original and nonce
sentences, with only a small reduction in accuracy for the latter. Their success on the nonce sentences
supports the conclusion that RNNs are acquiring useful syntactic knowledge from language modelling,
not just memorizing word co-occurrence statistics. Additionally, the RNNs that perform best at their
language modelling objective (measured in terms of their performance on next word prediction) also
perform best on the agreement task, providing further evidence of the relationship between language
modelling and syntactic knowledge. Once again, Transformer models like BERT were found to
perform better than RNNs on this task, including in the nonce sentence condition (Goldberg, 2019).

Marvin and Linzen (2018) further tested LSTM language models on a broader range of syntactic
phenomena, including subject-verb agreement, reflexive anaphora, and negative polarity items. Cru-
cially, they constructed minimal pairs of stimuli for each phenomenon using templates instead of
selecting naturally occurring sentences, allowing them to achieve greater coverage and finer control of
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potential confounds. They found that while LSTM models performed near-perfectly on local subject-
verb agreement dependencies, their performance degraded substantially on non-local dependencies
such as long VP coordination (e.g., “The manager writes in a journal every day and likes/*like to
watch television shows”) or agreement across a prepositional phrase (e.g., “The farmer near the
parents smiles/*smile”). Likewise, performance on reflexive anaphora (e.g. “The manager that the
architects like doubted himself/*themselves”) and negative polarity items (e.g. “No/*Most students
have ever lived here”) was mixed across conditions, with models performing significantly worse than
humans overall. However, Goldberg (2019) also found that Transformers performed much better,
achieving near or above human performance on these tasks.

Wilcox et al. (2018) evaluated models on filler-gap dependencies. Filler-gap dependencies de-
scribe a syntactic construction where a word or phrase (the filler), often a wh-word like “what”
or “who,” is moved to a different position in a sentence, leaving behind an empty position (the
gap), with both elements retaining their semantic relationship within the sentence’s structure. For
example, “Who did you see __ at the library?” has a filler (who) moved to the front of the sen-
tence, leaving a gap (marked with underscores) after the verb. Without the filler, as in “*You did
see __ at the park”, the sentence becomes incomplete and incorrect. Filler-gap dependencies are
subject to complex island constraints: specific syntactic environments where the usual relationship
between the filler and the gap is blocked, rendering certain configurations ungrammatical (Ross,
1967). These constraints delineate the boundaries within which the filler-gap dependencies oper-
ate, such as prohibiting gaps within complex noun phrases or in doubly nested clauses headed by
wh-words, thus placing restrictions on where gaps can occur in a sentence. Wilcox and colleagues
found that LSTM language models are sensitive to filler–gap dependencies and to some of the is-
land constraints on them, in which cases their expectation of a gap is attenuated. Whether these
results actually demonstrate model sensitivity to island constraints as opposed to non-grammatical
factors is debated (Chowdhury and Zamparelli, 2018), and additional research suggests that RNNs
are insensitive at least to some island constraints (Chaves, 2020).

Ruling out confounds from surface heuristics in targeted behavioural studies is challenging, de-
spite the use of experimental controls like attractors. Lee and Schuster (2022) investigated whether
language models could correctly predict agreement patterns between reflexive pronouns (e.g. “him-
self”) and their referent noun phrase in English control constructions, which lack clear surface cues
like subject-verb agreement. They tested the Transformer-based language model GPT-2 (Radford
et al., 2019) on transitive control constructions containing both a subject and object, with and
without an intervening noun phrase between the reflexive pronoun and its subject controller. They
found that GPT-2 performed at chance levels on subject control constructions with an intervening
noun, incorrectly relying on agreeing with the closest noun phrase. However, the model performed
at ceiling on object control and on constructions without an intervening noun between the reflexive
and subject. Overall, the results suggests that GPT-2’s sensitivity to reflexive anaphor agreement
patterns in control constructions is limited, despite its strengths on other syntactic tasks.

Futrell et al. (2019) further asked whether the behaviour of language models provides evidence
that they can incrementally represent syntactic state, in the way a symbolic grammar-based model
does using a stack-based parse. Through carefully designed psycholinguistic experiments probing
phenomena like garden path effects and interpretation of subordinators, they showed that LSTMs
can implicitly capture aspects of hierarchical syntactic state from language modelling objectives
alone. However, they also suggest that fully encoding the syntactic requirements of constructions
may require explicit syntactic supervision during training.

Beyond targeted behavioural studies, general benchmarks or “challenge sets” covering a wide
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range of syntactic phenomena have been designed to evaluate the performance of language models
more holistically. One such resource is BLiMP (Benchmark of Linguistic Minimal Pairs), a large-
scale benchmark testing 67 minimal pair types in English, each comprising 1,000 pairs, organised
into 12 broad categories spanning morphological, syntactic, and semantic phenomena (Warstadt
et al., 2020). GPT-2 was found to perform best overall (81.5% accuracy), although it still fell short
of human performance (88.6% estimated individual human agreement based on ratings on a forced-
choice task). Another Transformer-based language model, RoBERTaBASE (Liu et al., 2019b), was
found to achieve near-human performance (within 2% points of the human baseline or better) on 6
out 12 BLiMP categories (Zhang et al., 2020). SyntaxGym is another holistic evaluation pipeline
that streamlines the evaluation of language models on standardized test suites targeting a broad
range of syntactic phenomena (Gauthier et al., 2020). The larger version of GPT-2 (GPT-2-XL)
achieved 89.97% accuracy on test suites from SyntaxGym (Hu et al., 2020).

Taken together, this body of evidence suggests that modern neural networks trained on a language
modelling objective, and especially those based on the Transformer architecture, are sensitive to
hierarchical syntactic structure beyond surface heuristics. Indeed, their performance on targeted
behavioural tests appears to generalize fairly well to previously unseen instances of many syntactic
phenomena, including in challenging cases involving attractors and long-range dependencies. In
many cases, model behaviour is in line with human performance on grammaticality judgements.
While the majority of the reviewed experiments focus on the English language, this general trend
appears to hold across languages (Ravfogel et al., 2018; Mueller et al., 2020; Li et al., 2021; de-
Dios-Flores and Garcia, 2022). The significance of these results should not be understated, as the
structure-dependent generalization exhibited by language models has traditionally been assumed to
require the kind of systematic compositional rules found in symbolic parsers.

3.1.2 Compositionality and recursion

Despite the apparent success of language models on a wide array of behavioural experiments, there
is an ongoing debate about whether their performance is robust enough to warrant ascriptions of
human-like syntactic competence. In linguistics, the principle of compositionality states that the
meaning of a complex expression is determined by the meanings of its constituent parts and the way
in which they are syntactically combined (Partee, 1981). Compositionality is not just a property of
linguistic expressions, but also often considered an essential aspect of linguistic competence, where
it refers to the ability to systematically construct and comprehend novel expressions by combining
known meaningful elements according to grammatical rules. This productive capacity for rule-based
combination is meant to explain how humans can generalize the production and comprehension of
an infinite number of sentences from a finite set of words and rules, beyond memorized associations.

A longstanding critique of connectionist models is that they fail to exhibit this ability, unlike
their symbolic counterparts (Fodor and Pylyshyn, 1988; Quilty-Dunn et al., 2023). The proficiency
of modern language models in processing and generating seemingly novel sequences unseen in their
training data has prompted an effort to systematically evaluate their compositional aptitude (see
Pavlick, 2022; Donatelli and Koller, 2023, for reviews). However, these models are typically trained
on massive corpora containing a huge variety of linguistic constructions. This makes it difficult to dis-
cern whether they have truly learned the underlying computational principles needed for systematic
generalization, or whether they are relying on having memorized a large inventory of constructions
during training (Kim et al., 2022).

To better assess models’ compositional abilities, research in computational linguistics has turned
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to synthetic datasets specifically designed to test compositional generalization in a controlled setting.
These datasets intentionally limit the constructions present during training, and construct test sets
requiring the composition of seen components in new ways. For instance, the SCAN dataset contains
a set of natural language commands (e.g., “jump twice”) mapped to sequences of actions (e.g., JUMP
JUMP), with the test set containing longer commands requiring systematic composition (Lake and
Baroni, 2018). Other prominent examples are the CFQ dataset, which maps natural language
questions to logical forms (Keysers et al., 2019), and the COGS dataset, which tests generalization
to unseen syntactic structures (Kim and Linzen, 2020). By training models on synthetic data, the
aim is to evaluate whether they can productively combine known units based on a representation
of their underlying structure, rather than relying solely on memorized patterns. This method is
reminiscent of “control rearing” studies in animal cognition research, which also involve manipulating
the learning environment of a subject to evaluate its influence of a target behaviour (Frank, 2023a).

Initial results of testing deep neural networks on synthetic datasets for compositional generaliza-
tion generally showed a performance gap between the training and test sets. This was suggestive
of a limited ability to properly generalize across challenging distribution shifts that require produc-
tive combination of known elements in novel ways. However, since then, many Transformer-based
models have achieved strong accuracy on compositional generalization datasets. This progress has
been enabled by various strategies, including modifications to the standard Transformer architec-
ture to provide more effective inductive biases for compositionality (Csordás et al., 2021; Ontanon
et al., 2022), and data augmentation techniques to expose models to a greater diversity of training
examples (Andreas, 2020; Akyürek et al., 2020; Akyurek and Andreas, 2023; Qiu et al., 2022).

Another promising strategy that has shown excellent results without requiring architectural
changes is meta-learning, or learning to learn better by generalizing from exposure to many related
learning tasks (Lake, 2019; Conklin et al., 2021; Lake and Baroni, 2023). Standard supervised
learning relies on the assumption that training and test data come from the same distribution, which
can lead models to overfit on the peculiarities of the training set. Meta-learning exposes models to a
distribution of related tasks, rather than a single task, to promote learning of generalizable knowledge
that transfers better. This makes models less prone to memorizing training data, and better able
to productively combine known elements in new ways when faced with novel combinations unseen
during training. There is also evidence that generalization accuracy on syntactically novel items
from the out-distribution test sets improves long after in-domain validation accuracy on the training
distribution plateaus; this suggests that halting training too early based on in-domain validation
accuracy leads to greatly underestimating the ability of Transformer models to generalize (Murty
et al., 2023).

Another core tenet of theoretical linguistics holds that human linguistic competence is linked to
the ability for recursive processing. Humans can construct and compute over hierarchically nested
syntactic representations by recursively applying functions to their own outputs, with clauses embed-
ded within other clauses in complex tree structures. The processing of such recursive embeddings is
taken to be a hallmark of the human language faculty in the Chomskyan tradition, allowing for the
generation of syntactic structures with potentially unlimited complexity from finite means (Chom-
sky, 1957; Hauser et al., 2002). Accordingly, assessing whether language models’ ability to handle
recursion is deeply relevant to the discussion of their putative syntactic competence beyond shallow
pattern recognition.6

6It is worth noting that the assumption that recursion is a necessary property of all human languages has been
challenged. For examples, languages like Riau Indonesian provide some evidence that linear grammars without
recursion may be possible (Gil, 1999; Nefdt, 2024).
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RNNs – and their LSTM variants – process data recurrently by applying the same weights to
sequential elements, maintaining a hidden state that carries information across steps. In a classic
study, Elman (1991) showed that simple RNNs trained on sentences containing multiply-embedded
relative clauses could encode information about their recursive structure, inspiring research on con-
nectionist models of recursive processing in humans (Christiansen and Chater, 1999). By contrast
with RNNs, modern Transformers do not have built-in recurrent processing; their self-attention mech-
anism endows them with distinct inductive biases that lead them to process recursive constructions
differently, but may in fact give them an advantage in handling hierarchical structure, as evidenced
by their superior performance across a broad range of complex syntactic tasks.

Recent research sheds light on the strengths and weaknesses of different language models archi-
tectures when it comes to processing recursion. Lakretz et al. (2021) found that while LSTM-based
language models can track information about local and long-distance number agreement, they have a
limited capacity to handle nested recursive structures, seen in their failure to track agreement in some
long-range embedded dependencies. In a follow-up study, Lakretz et al. (2022) investigated whether
the newer Transformer architecture shows improvements in processing dependencies in nested con-
structions and can approximate human recursive competence. They found that Transformer models
like GPT-2-XL could process short-range recursion in nested object-relative clauses nearly perfectly,
vastly exceeding LSTMs. However, their performance sharply dropped below chance after adding
a three-word prepositional phrase to make the embedded dependency longer (e.g., “The keys that
the man near the cabinet holds are…”).7 They conclude that Transformer-based models are fun-
damentally limited in their capacity to handle long-range recursive nesting, and thus fail to model
a core aspect of human linguistic competence.

However, a closer look at the methodology of these studies suggests that initial results should be
interpreted with caution. Indeed, human subjects tested by Lakretz et al. (2021) on subject-verb
agreement in nested sentences with centre embedding received substantial training with examples,
instructions, and feedback. By contrast, neural networks were tested in a zero-shot setting, without
examples or task context. To assess the influence of this discrepancy, Lampinen (2023) tested the
Transformer-based language model Chinchilla (Hoffmann et al., 2022) on the same task, providing it
with context analogous to human training. When prompted with several example sentences before
each test case, Chinchilla performed better than humans even on the most challenging conditions.
Furthermore, upon reanalysing the human results of Lakretz et al. (2021) on the task, Lampinen
found that human subjects, even after training, seem to perform near chance the first few times
they encounter difficult syntactic structures. These results suggest that Transformer-based language
models can in fact handle complex nested syntactic dependencies as well as humans, given just a few
prompting examples, and that humans may also need some experience on the task before performing
well on the most complex cases.

More generally, this work highlights the difficulty of establishing fair and meaningful behavioural
comparisons between the behaviour of humans and language models in an experimental context. Dif-
ferences in task framing can obscure real similarities or differences in the capabilities being studied.
When neural networks appear to exhibit performance failures compared to humans, care should be
taken to ensure that experimental conditions are well-matched and take into account contingent
constraints on performance for all tested subjects or systems (Firestone, 2020). This methodological
concern is familiar from comparative and developmental psychology, where infants and non-human
animals are known to exhibit specific performance constraints like limited memory or motor control

7The much larger model GPT-3 (Brown et al., 2020) also failed to perform above chance in the same condition,
tested in the subject_verb_agreement subtask of the BIG-Bench benchmark (Srivastava et al., 2023).
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that can prevent them from demonstrating full competence through behaviour on a task (Frank,
2023a). The discrepancy between language models’ performance on explicit grammaticality judg-
ment tasks and direct probability assessments is indicative of an analogous effect of auxiliary factors
related to the strength of task demands (Hu and Frank, 2024; Millière and Rathkopf, 2024). This
point cuts both ways, however; the mere fact that language models achieve high accuracy on a
syntactic task or benchmark does not straightforwardly entail that they possess the corresponding
competence, if potential confounds such as shallow heuristics are not adequately controlled.

3.2 Probing studies
While behavioural experiments can provide evidence regarding the sensitivity of model predictions
to syntactic phenomena in carefully controlled conditions, they generally do not warrant stronger
inferences about how models represent this information internally. Probing studies aim to go beyond
mere behavioural data to determine what kind of linguistic information can be extracted from the
internal representations of language models tested on specific tasks (Alain and Bengio, 2018; Adi
et al., 2016; Shi et al., 2016; Hupkes et al., 2018).

3.2.1 Diagnostic probing

The typical methodology of probing studies involves training a separate supervised classifier, also
called a diagnostic probe, to predict linguistic properties like part-of-speech tags or dependency
relations directly from the model’s internal activations.8 This generally involves collecting a set of
samples labelled with the target linguistic property, feeding these samples as input to the model, and
capturing the model’s activations in a given layer in response to each input. The resulting dataset of
activations-label pairs can be used to train the probing classifier to predict each sample’s label from
the corresponding model activations. If the probe can predict the target linguistic properties with
high accuracy on held-out examples, it suggests that information about those properties is encoded
in the model’s learned representations. For example, given a corpus of sentences labelled with part-
of-speech tags for each word, a linear classifier could be trained to map a model’s word embeddings
to the correct part-of-speech tag. After training, the probe’s performance at assigning the correct
part-of-speech tag to new unseen words would be evaluated. High accuracy on the test set suggests
the model’s word embeddings encode information relevant for part-of-speech disambiguation.

Probing classifiers have been widely applied to study many model architectures and linguistic
phenomena (see Belinkov, 2022, for a review). Early examples include probing a neural machine
translation model to predict morphological properties (Shi et al., 2016), probing an LSTM tested
on a subject-verb agreement task to decode information about the subject’s number (Giulianelli
et al., 2018), and probing sentence embeddings to examine which syntactic properties such as parse
tree depth are encoded (Conneau et al., 2018). More recent work has scaled up probing to anal-
yse larger pre-trained Transformer language models, with a particular focus on BERT due to its
wide availability. This research program, informally known as “BERTology” (Rogers et al., 2020),
yielded converging evidence that a broad range of syntactic information is decodable from the inter-
nal activations of language models. This includes evidence that BERT encodes hierarchical rather

8While behavioural studies are inspired by psycholinguistics, probing studies are inspired by decoding methods
in neuroscience (Ivanova et al., 2021). By training classifiers on known patterns of brain activity associated with
specific stimuli or tasks, neuroscientists can then use these classifiers to predict or decode the stimuli or task from
new patterns of brain activity. Probing an artificial neural network offers much more granular and direct access to
internal states than available with current neuroimaging techniques.
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than merely linear structure (Lin et al., 2019; Warstadt and Bowman, 2020); evidence that BERT’s
contextual word embeddings encode information about part-of-speech tags, syntactic chunks, depen-
dencies, semantic roles and coreferents hierarchically organized across layers (Tenney et al., 2019;
Liu et al., 2019a; Jawahar et al., 2019; although see Niu et al., 2022, for a critical discussion of
the relationship between layer depth and decodable information); and even evidence that syntactic
parse trees can be recovered from BERT and its variants (Vilares et al., 2020; Kim et al., 2019; Rosa
and Mareček, 2019; Arps et al., 2022).

3.2.2 Methodological challenges

Standard probing studies using diagnostic classifiers have raised methodological concerns (Belinkov,
2022). The main concern is that probing is fundamentally correlational – the presence of decodable
information does not conclusively demonstrate it plays a causal role in the model’s outputs. When
a probe achieves high accuracy on the prediction of a linguistic feature from a model’s activations,
this may not straightforwardly entail that the model actually represent the relevant feature without
adequate control. Two primary alternative explanations of probe accuracy must be ruled out to
support claims about linguistic competence.

The first possibility is that, while the probed linguistic feature is decodable from the model’s acti-
vations, the model does not in fact utilize this information when making predictions. In other words,
the classifier’s high accuracy in predicting a feature from the model’s activations may indicate that
while the latter genuinely encodes the relevant information, it is not causally efficacious in model
behaviour on the task. There is empirical evidence that this concern is not always unfounded. For
example, Elazar et al. (2021) used a technique called adversarial probing to explicitly remove infor-
mation about specific linguistic features (e.g., part-of-speech information) from a model’s activations.
By measuring the subsequent impact on the model’s core task performance, they demonstrated that
high decoding accuracy does not always demonstrate a major causal effect of decoded information.

The second possibility is that the relevant linguistic knowledge is not even encoded in the model’s
learned representations; rather, the probing classifier might be powerful enough to recover the prop-
erty from surface patterns, memorization, or other cues (Hewitt and Liang, 2019). This is because
probes are trained in a supervised manner on task data labelled for the linguistic property of interest.
As a result, the probe has access to explicit supervision teaching it to recognize patterns related to
the property in model activations, and may learn from irrelevant correlations. For instance, nonlin-
ear classifiers may be able to predict syntactic properties by memorizing the training set instead of
extracting syntactic features from the representation. This risks wrongly ascribing complex linguis-
tic capabilities to the model when probing does not convincingly demonstrate such knowledge was
already present before introducing the explicit probing dataset.

Control tasks and metrics such as selectivity can help distinguish between genuine extraction of
linguistic structure and reconstruction from spurious cues. For example, Hewitt and Liang (2019)
designed control tasks where the labels were randomly shuffled, so the probe could only succeed by
memorizing spurious cues rather than extracting linguistic knowledge. They defined selectivity as
the gap between probing accuracy on the real task versus the control task. High selectivity suggests
that the probe is genuinely extracting linguistic properties from the model’s activations, while low
selectivity suggests it may be latching onto spuriously predictive cues.

There is an ongoing debate about whether simple linear probes should be used to minimize
the risk of learning to reconstruct linguistic features from spurious cues. Linear probes have been
advocated under the assumption they have lower expressive power compared to nonlinear probes.
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As such, they are more likely to rely solely on features explicitly encoded in the model’s activations,
while more complex probes are more likely to capture additional signals that are not actually used
by the model itself. However, the potential trade-off between probe complexity and accuracy may
warrant the use of complex probes if proper controls are in place. In particular, more complex probes
may provide a less constrained estimate of the total discriminative information about a property
encoded in the model’s activations (Pimentel et al., 2020).

3.2.3 Parameter-free probing

Parameter-free approaches constitute an interesting alternative to using supervised classifiers. The
goal of parameter-free probing is to extract information about a model’s encoding of a linguistic
feature by directly analysing its representations without introducing additional learned parameters
that may confound the results. One such strategy consists in analysing the self-attention weights of
Transformer-based language models to recover syntactic information. Attention heads were found
to track dependencies (e.g. objects of verbs, determiners of nouns, prepositional objects, and coref-
erence) with high accuracy (Raganato and Tiedemann, 2018; Clark et al., 2019; Mareček and Rosa,
2019), with some attention heads specializing in tracking individual dependency types (Htut et al.,
2019). Cherniavskii et al. (2022) used topological data analysis to extract graph-based features from
Transformer attention maps. They showed topological properties of the attention graph improve
acceptability classification and minimal pair detection without additional parameters, revealing in-
terpretable correlations between attention patterns and specific grammatical phenomena.

Representational similarity analysis (RSA) is an alternative parameter-free method from com-
putational neuroscience (Kriegeskorte et al., 2008) that involves measuring the similarity of model
representations to prototypical representations constructed to instantiate specific linguistic hypothe-
ses. Using RSA, Lepori and McCoy (2020) found that the representational geometry of BERT’s
contextual word embeddings reflects specific syntactic dependencies (e.g. pronoun coreference and
verb subject-sensitivity) better than random controls. Similarly, Chrupała and Alishahi (2019) used
RSA to find a significant correspondence between the representational geometry of various language
models and a reference model based on gold syntax trees.

Wu et al. (2020) proposed another parameter-free technique called perturbed masking, which
masks different words and analyses impact on model predictions. They derived a word impact
matrix from which they extracted unlabelled dependency trees with high accuracy; furthermore,
the induced dependency trees improved model performance on downstream tasks (e.g., sentiment
analysis) despite differences from human-designed parsers.

Finally, Murty et al. (2022) recently introduced an interesting parameter-free method called tree
projection to probe the intrinsic compositionality of Transformer models. Tree projection measures
the “tree-structuredness” of the model’s internal computations on an input, by scoring how well they
can be approximated by explicitly tree-structured models. The authors found that Transformers
trained on compositional generalization datasets become increasingly tree-like over the course of
training, with tree projections progressively matching ground truth syntax. Tree-structuredness
also positively correlates with compositional generalization. The emergence of tree-like computation
and alignment with syntactic formalisms provides evidence that Transformers can learn to implicitly
encode hierarchical syntactic knowledge, despite lacking explicit architectural constraints for tree-like
structures.
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3.3 Interventional studies
While parameter-free probing avoids potential confounds introduced by training an additional su-
pervised classifier on top of the model’s representations, it remains, like diagnostic probing, funda-
mentally correlational. Demonstrating that a linguistic feature can be decoded through attention
weights, similarities to prototypes, or tree projections does not guarantee that information plays a
causal role in model predictions. As such, mere probing provides an upper bound on relevant in-
formation that the model could use. By contrast, interventional studies aim to demonstrate causal
efficacy by actively interfering with the model’s internal states to assess their impact on behaviour.

3.3.1 Counterfactual interventions

Giulianelli et al. (2018) offer a classic example of this interventional approach. After training a
diagnostic probe to predict number agreement from the activations of an LSTM language model,
the authors actively intervened on the activation pattern identified by the probe to influence the
behaviour of the model. Specifically, in cases where the model failed on Gulordava et al. (2018)’s
subject-verb agreement prediction task, they modified the relevant activation pattern in the model
such that the diagnostic classifier’s agreement prediction would move slightly closer to the ground
truth. This causal intervention successfully improved the accuracy of the model on the task, provid-
ing evidence that the model’s encoding of subject-verb number agreement information is causally
efficacious.

Ravfogel et al. (2021) introduced a novel causal probing method called AlterRep that involves
generating counterfactual representations by manipulating the model’s encoding of specific linguistic
features. They applied it to assess whether BERT leverages relative clause boundary information
encoded in its activations correctly when predicting subject-verb number agreement in English. By
manipulating the model’s encoding of whether words are inside or outside relative clauses, they
found that BERT’s agreement predictions changed systematically in alignment with proper relative
clause usage. This suggests that BERT does use relative clause boundary information in a causal,
generalizable way for grammatically correct number agreement, consistently with the rules of English
grammar.

Lasri et al. (2022) took a usage-based approach to probing how linguistic properties are func-
tionally encoded in language models. As a case study, they focused on grammatical number and
its role in subject-verb number agreement. After confirming that number is encoded in BERT’s
embeddings, they performed causal interventions to erase number information at different layers
and analyse impacts on agreement accuracy. This approach builds on amnesic probing (?), but is
tailored to linguistic behavioural tasks requiring the erased information (Linzen et al., 2016). The
precise alignment between lost number information and degraded agreement performance provides
strong evidence that BERT relies on the erased encodings to perform number agreement. Further
experiments revealed that BERT employs distinct subspaces for encoding number in nouns versus
verbs, with information transferred indirectly across intermediate layers. Using counterfactual in-
terventions, Hao and Linzen (2023) also show that BERT’s ability to conjugate verbs is determined
by linear encodings of subject number that are distributed across token positions in middle layers
and concentrated in the subject position in early layers and verb position in later layers.

These causal interventions go a long way towards establishing the claim that language models do
represent syntactic features. In accordance with prominent philosophical theories of representation,
for a pattern of activation 𝐴 in a model to represent a given feature 𝐹 in the context of a given
task, it must not only be the case that 𝐴 bears correlational information about 𝐹 , but also that
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the system uses the relevant information to succeed at the task, and that it can misrepresent 𝐹
with some inputs (Shea, 2018). The existence of a probe that successfully predicts 𝐹 from 𝐴
provides evidence for the first condition (correlational information); task performance degradation
following a causal intervention to reduce information about 𝐹 in the model provides evidence for
the second condition (usage of information); finally, task performance improvement following a
causal interventions to shift probe prediction closer to the true labels provides evidence for the third
condition (misrepresentation) (see Harding, 2023, for a detailed discussion). Accordingly, causal
probing studies do provide preliminary evidence for representational claims about syntactic features
in language models.

3.3.2 Mechanistic interpretability

While causal probing provides targeted evidence about the encoding of linguistic features, the nascent
field of mechanistic interpretability takes a more comprehensive approach to reverse engineering mod-
els’ internal computations (Elhage et al., 2021, @millierePhilosophicalIntroductionLanguage2024a).
This research programme builds on a loose analogy between neural networks and traditional com-
puter programs, proposing that we might rigorously “reverse engineer” neural networks to recover
human-interpretable descriptions of how they process information, akin to decompiling software. At
the core of this paradigm is the notion that neural networks represent information in terms of in-
terpretable features connected through learned “circuits” or subnetworks implementing meaningful
computations (Olah et al., 2020). For example, a circuit might route semantic information between
embeddings across different layers based on syntactic relationships. By formally characterizing such
circuits in terms of weights and activations, mechanistic interpretability aims to provide complete
functional explanations of model behaviour.

To make progress towards this reverse-engineering goal, mechanistic interpretability researchers
use interventions analogous to causal probing techniques, which involve deleting or replacing pieces
of a model to identify components critical for certain computations. For example, Wang et al.
(2022) discovered a circuit for indirect object identification in GPT-2-small using a combination of
interpretability approaches relying on causal interventions. More sophisticated approaches can also
be used to investigate the representation of syntactic knowledge at a finer level. A promising recent
development involves training sparse autoencoders (SAEs) to identify interpretable features within
the model’s hidden states in an unsupervised manner without relying on ad hoc probes. For example,
Marks et al. (2024) trained SAEs on the activations of a small language model (Pythia-70M) and
used integrated gradients to compute approximate indirect effects of SAE features on the model’s
output for contrastive pairs of sentences. This process allows for the discovery of “sparse feature
circuits” that reveal the model’s internal mechanisms for performing linguistic tasks. They found
that small feature circuits of fewer than 100 nodes can explain a large proportion of the model’s
behaviour in subject-verb agreement tasks. Specifically, they identified an interpretable algorithm
that detects the main subject’s grammatical number in early layers, identifies distractors like the
start of a relative clause or prepositional phrase, and moves the subject number information to the
end of the distractor clause, such that it can be used in the model’s final layers to promote matching
verb forms. Notably, the circuits for handling simple agreement and different intervening clauses
showed substantial overlap, suggesting that this small model had developed a relatively abstract and
general mechanism for subject-verb agreement.

Going beyond the investigation of grammatical rules, Yamakoshi et al. (2023) used causal in-
terventions to analyse how language models process Winograd Schema Challenge sentences, which
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require commonsense reasoning to resolve ambiguous pronouns. Their found distinct circuits within
the model responsible for integrating contextual information, suggesting that language models may
construct implicit “situation models” to resolve ambiguities.

These techniques can also be used to study the learning dynamics of neural networks. Studying
a small Transformer model trained on a modular addition task through the lens of mechanistic
interpretability, Nanda et al. (2022) found evidence of three distinct learning phases: an initial phase
in which the model relies on brute memorization, an intermediate phase in which it forms a dedicated
circuit implementing a general algorithm for modular addition, and a cleanup phase in which the
memorization components are removed. This raises the intriguing possibility that a similar learning
process could occur for the acquisition of syntactic rules when a model is trained on natural language
data: over the course of training, language models might be forced to learn syntax to improve their
performance on next-word prediction, after an initially relying on memorizing constructions (Murty
et al., 2023). In fact, Chen et al. (2023) identified a syntax acquisition phase in the training of
masked language models, characterized by sudden drops in loss and rapid improvements in syntactic
capabilities. They observed two distinct phase transitions: a “structure onset” marked by a spike in
unlabelled dependency parsing accuracy, followed by a “capabilities onset” where the model shows
an abrupt increase in performance on the BLiMP grammatical acceptability benchmark.

While there isn’t much overlap yet between research on causal probing in computational lin-
guistics and research on mechanistic interpretability, the latter could help answer questions about
whether and how language models implement syntactic rules at a much finer level of granularity.
Having reviewed empirical evidence for syntactic knowledge in language models, I will now consider
the implications of these findings for theoretical linguistics and ongoing debates about language
acquisition.

4 Language models and theoretical linguistics
Experimental research on language models is almost completely ignored in theoretical linguistics (see
Baroni, 2022, for a quantitative analysis of the literature). The reverse is not true, as many of these
experiments in computational linguistics are explicitly informed by linguistic theory. This asymmetry
calls for an explanation. It could be that most theoretical linguists are not well-acquainted with the
experimental literature on language models; or, on a more charitable view, they might think this
literature is irrelevant to their own theoretical projects. The latter explanation is certainly true of
some vocal critics of language models: Noam Chomsky, for example, has prominently argued that
there is nothing whatsoever they could contribute to linguistics even in principle (Chomsky et al.,
2023; see also Norvig, 2017).9 If this were true, then the whole body of research discussed in the
previous section would have nothing to tell us about human language use and acquisition, and could
be seen as a mere exercise in studying engineering artifacts.

If we take language models seriously as models, rather than mere engineering artifacts, what
are they models of ? The answer to this question informs the relevance of language models to
linguistics. In what follows, I will discuss three modelling targets for language models: linguistic
performance, linguistic competence, and language acquisition. These possibilities are not mutually
exclusive. Language models may differ in various ways, including architecture, parameter size, and
training data; these differences are relevant to what a given model can reasonably be taken to be

9“In principle, they [language models] can tell us nothing about language, language acquisition, human cognition,
anything” (Chomsky, personal communication).
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modelling. Furthermore, it is conceivable that the same language model might be used to investigate
aspects of linguistic performance, competence, and acquisition, depending on the pragmatic goals of
researchers in particular experimental contexts. This still leaves open the question whether language
models could, in principle, be treated as models of performance, competence, or acquisition. If the
answer is negative, particularly when it comes to modelling linguistic competence and acquisition,
then the relevance of language models to theoretical linguistics ought to remain very limited. If the
answer is positive, however, then these models might be very useful tools, in the right experimental
context, to test linguistic hypotheses and constrain linguistic theorizing.

4.1 Performance and competence
In mainstream generative linguistic theory, a key distinction is made between a speaker’s linguistic
competence – their idealized knowledge of a language’s grammar – and their performance – the
constrained manifestation of this competence in actual language use (Chomsky, 1965). On this
view, publicly observable utterances result from unobservable internal structures, but also involve
many additional psychological processes beyond core competence. Linguistic performance can be
affected by external factors like memory limitations, distractions, slips of the tongue, etc. that may
obscure the full extent of the underlying competence.

What would it mean for a language model to be a model of human linguistic performance, as
opposed to competence? An obvious proposal is that this is merely a matter of behaviour: if
the language model behaves similarly enough to humans in a broad range of linguistic scenarios –
for example by matching human response patterns on sophisticated benchmarks probing various
aspects of linguistic performance –, then it is ipso facto a predictive model of human linguistic
performance.10 Given that language models are trained on human-generated text corpora with a
next-word prediction objective, all sufficiently trained language models can be treated as models
of linguistic performance in this sense. In fact, language models trained on a large amount of
data do excel at mimicking the (written) outputs of human language users, which is why it has
become particularly challenging or even impossible to automatically detect machine-generated text
(Sadasivan et al., 2023). This does not entail, however, that all language models are equally good
models of performance. Larger language models like GPT-4 perform better than smaller models
at next-word prediction (measured by perplexity, a metric that quantifies how well the probability
distribution predicted by the model aligns with the actual distribution of the words in the text). But
they also hardly ever make grammatical mistakes – unlike humans. In that respect, it is unclear that
they should be treated as the best models of human performance, compared to less grammatically
proficient models.

Furthermore, linguistic performance does not merely encompass language production, but also
language comprehension. Expectation-based theories of sentence processing posit that processing
difficulty is driven by the predictability or surprisal of upcoming words based on the context (Levy,
2008). In psycholinguistics, reading times are routinely used as a proxy measure for the predictabil-
ity of upcoming words, as reflected in the subjective probabilistic expectations humans form during
language processing. Interestingly, language models’ performance on next-word prediction (perplex-
ity) appears to be correlated to their ability to predict human reading times up to a certain point
(Wilcox et al., 2020). However, Shain et al. (2022) found that GPT-2-small significantly outper-
formed larger models, like GPT-3, in predicting human reading times across a number of different

10In Section 4.4, I will come back to the notion of scientific model in philosophy of science, and the extent to which
it applies to language models depending on what they are intended to be modeling.
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datasets – despite the fact that larger models are better at next-word prediction (see also Oh and
Schuler, 2023). This suggest that there is a threshold beyond which next-word prediction perfor-
mance no longer reflects human subjective word probabilities. This is noteworthy given that smaller
models like GPT-2-small are trained on a more realistic quantity of linguistic data, compared to the
linguistic input of humans (see Section 4.3 below).

The question whether (some) language models might be treated as models of linguistic compe-
tence is more difficult, and crucially hinges on controversial theoretical assumptions. If performance
closely reflects competence, then modelling performance with a language model trained on linguistic
utterances could in principle provide insight into human competence. This assumes that the effects
of performance are merely due to noise in the externalization of competence through behaviour,
and do not systematically prevent inference of the full underlying competence structure. However,
generative linguists deny this assumption, pointing to para-linguistic performance effects like inter-
jections and hypothetical complex transformations undergone by linguistic structures in the process
of externalization. To get at these hypotheses about competence, theoretical linguistics draws on
various sources of evidence, including evolutionary theory and developmental psychology, rather
than merely modelling the surface forms of language.

Dupre (2021b) argues that if there is indeed a substantial gap between human linguistic com-
petence and performance, then training a language model to mimic linguistic performance through
next-word prediction may tell us little about the competence that theoretical linguists aim to de-
scribe. This would entail that computational linguistics research on language models is mostly
irrelevant to theoretical linguistics, particularly to discriminate between competing theories of lin-
guistic competence. Even if a model achieves human-like performance on a syntactic task, and even
if we manage to infer the computations underlying such behaviour through causal interventions, we
cannot directly infer that human performance on same task is underlain by the same computations.

Note that this argument does not entail that language models have nothing to tell us about
language acquisition. As we will see in what follows, experiments with language models may be
very relevant not only to theoretical learnability claims, but also to weaker developmental claims.
In addition, Dupre doesn’t deny that neural network models may constrain linguistic theories at
least indirectly, by offering some evidence about the developmental or neurobiological plausibility of
some proposed competences compared to others (Dupre, 2021b, 619-20). Finally, he concedes that
language models could, in principle, acquire human-like competence rules merely from being trained
on performance data; however, he suggests that this would be surprising given the systematic gaps
between competence and performance, and the diverging goals of theoretical linguistics and language
modelling (explanation vs. prediction).11

Dupre’s argument is ultimately conditional: to the extent that mainstream generative linguistics
is correct in assuming that the performance-competence gap is substantial, then we should not
expect language models trained on performance data to acquire human-like competence and reveal
the nature of human competence. Importantly, the antecedent assumption is highly controversial;
many linguistic theories do not postulate the existence of an insurmountable discrepancy between
the surface structure of language and the structures that subserve language acquisition and use (e.g.,
Culicover and Jackendoff, 2005; Pinker and Jackendoff, 2005; Tomasello, 2009; Christiansen and

11An alternative suggestion is that language models should be viewed as implementation-level models of linguistic
competence, representing a mechanistic abstraction of neural processes that implement linguistic computations (Blank,
2023). This interpretation is supported by studies mapping the activations of language models to brain signals and by
findings that language models can predict neural responses to language across various neuroimaging modalities (see
Tuckute et al., 2024, for a review). I will leave that suggestion aside here to focus on the direct relevance of language
models to linguistic theory.
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Chater, 2016). While proponents of these theories may not deny that some performance constraints
on behaviour can be dissociated from linguistic competence, they do not assume that the latter is a
radically different and minimal set of rule systems that cannot be induced from performance data.
If that is the case, then studying language models under the lens of behavioural tasks, diagnostic
probes, and causal interventions might give insights not only into human performance, but also into
human competence (Linzen, 2019; Linzen and Baroni, 2021).

The principled stance against the relevance of language models to theoretical linguistics can also
be turned on its head. The sharp competence/performance distinction postulated by mainstream
generative grammar is justified, at least in part, by negative claims about the learnability of language
from mere exposure to data. As we shall see in Section 4.2, language models may challenge those
claims, by providing a potential existence proof for the success of statistical learning without innate
grammatical constraints (Contreras Kallens et al., 2023; Piantadosi, 2023). In turn, this might
weaken the motivation for an absolute performance/competence gap, and correspondingly increase
the relevance of language models to linguistic theory.

There is a further question about whether it makes sense to apply the performance/competence
distinction to language models themselves, and if so, how the distinction manifests (Firestone, 2020;
Katzir, 2023). For humans, we can attribute many performance failures to temporary recoverable
factors and experimentally control these variables to reveal competence. While model performance
may be underestimated by inadequate decoding methods (Hu and Levy, 2023) and mismatched
experimental conditions (Lampinen, 2023; Cowley et al., 2022; Frank, 2023c), this is not directly
equivalent to the competence/performance distinction, at least as the distinction is framed by gen-
erative linguists. A closer analogue might be found in (a) cases of misrepresentation of syntactic
features revealed by causal interventions on probed activations (Giulianelli et al., 2018; Harding,
2023), and (b) cases in which multiple circuits are competing for influence on model behaviour
(Zhong et al., 2023; Millière and Rathkopf, 2024). Such cases may provide evidence that a model
has the capacity to represent a given feature or perform a given computation, even though this
capacity is not always reflected in its observable behaviour.

If there is a meaningful distinction between performance and competence when it comes to lan-
guage models, we might wonder whether it is always appropriate to discount performance errors as
irrelevant to the assessment of competence in the case of humans, but not in the case of models.
This relates to the comparative bias that Buckner (2013) termed “anthropofabulation”: the ten-
dency to assess nonhuman performance against an inflated conception of human competence (see
also Buckner, 2021, and Millière and Rathkopf (2024)). In the context of the evaluation of language
models on syntactic tasks, anthropofabulation might manifest itself through the expectation that
neural networks should achieve perfect or near-perfect performance accuracy to be ascribed human-
like competence in the domain, while performance mistakes are ignored in the evaluation of human
competence. If there are contingent limitations on the externalization of syntactic competence in
language models (e.g., interference from competing circuits in some circumstances), then it might be
reasonable to downplay some of their performance errors in human-machine comparisons. Alterna-
tively, if the gap between human performance and competence is narrower than typically assumed
by generative linguistics, then human performance errors in appropriately matched experimental
conditions ought to be taken into account.
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4.2 In-principle claims about competence and learnability
A traditional charge against connectionist models is that they have fundamental and insurmountable
limitations that make them inadequate as models of cognition or linguistic competence, unless they
merely implement classical symbolic structures (Fodor and Pylyshyn, 1988; Pinker and Prince, 1988;
Marcus, 1998). Generative linguists, in particular, hold that statistical and usage-based approaches
to language modelling face systematic limitations, because their reliance on linear string order cannot
account for the hierarchical structure dependence of syntactic rules (Everaert et al., 2015).

These theoretical claims have inspired research on in-principle capabilities and limitations of lan-
guage models architectures. On the one hand, Hahn (2020) found that the self-attention mechanism
in Transformers cannot model periodic finite-state languages or hierarchical structure unless the
number of layers or heads increases with input length. Deletang et al. (2022) also tested various neu-
ral networks architectures on a battery of sequence prediction tasks designed to span the Chomsky
hierarchy of formal grammars (Chomsky, 1959). They found that contemporary language models
architectures like LSTMs and Transformers do not neatly fit into the hierarchy. LSTMs can solve
some simple context-sensitive tasks but fail on most, while Transformers fail on many regular tasks.
On the other hand, Yao et al. (2021) showed that Transformers can process bounded hierarchical
formal languages that adequately capture the bounded hierarchical structure of natural language
better than their unbounded counterparts, and that they have a memory advantage over RNNs de-
spite lacking a built-in recursive mechanism. Related work found that Transformers can effectively
learn “shortcut” solutions that replicate the computations of recurrent models in a single pass (Liu
et al., 2022), and that they have an inherent simplicity bias that shapes their generalization capabil-
ities beyond what classical theory predicts, allowing success on tasks they should theoretically fail
at (Bhattamishra et al., 2023).

In practice, there is converging empirical evidence that Transformer-based language models are
capable of processing bounded hierarchical phrase structure and recursion in a naturalistic context
(Mueller et al., 2022; Lampinen, 2023; Allen-Zhu and Li, 2023; Beguš et al., 2023; Dąbkowski and
Beguš, 2023; Zhao et al., 2023). As discussed in Section 3, a wealth of experiments show that
language models are sensitive to, and encode information about, many morphological and syntactic
features – including number agreement, constituency, long-distance dependencies, coreference and
anaphora, among others. Together with their resounding success on traditional NLP tasks and
fluent natural language generation, these results have prompted a reappraisal of learnability claims
in theoretical linguistics.

Gold (1967) was highly influential in framing the problem of language acquisition as one of gram-
matical inference. Gold’s theorem formally shows that for many common classes of languages, no
learner can be guaranteed to eventually converge on the correct grammar for the target language
based only on positive example sentences. Importantly, this theorem only shows limitations of a spe-
cific formal model of learning based solely on positive example sentences; it does not directly model
real-world language acquisition, where its strong assumptions are very unlikely to hold. Nonetheless,
it has been widely (mis)interpreted as demonstrating that language acquisition is only possible if
the learner’s hypothesis space is heavily constrained by innate knowledge (Clark and Lappin, 2010).

This strong nativist claim about the in-principle learnability of grammar on the basis of mere
exposure to data has endured in generative linguistics (e.g., Carnie, 2021, 17-20).12 Aside from

12Somewhat confusingly, the defence of this claim on the basis of formal learnability results such as Gold’s theorem is
sometimes referred to as the “poverty of the stimulus” (PoS) argument, although the canonical – and less implausible
– version of the PoS argument, as we shall see, rests on empirical evidence from developmental psycholinguistics (see
Pearl, 2022, for a thorough discussion).
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being unwarranted by formal learnability results under plausible learning assumptions, this strong
negative claim has come under pressure from positive evidence of effective statistical learning. In
this context, neural network models can provide an existence proof of learnability that undermines
in-principle claims; as Elman et al. (1996) put it, “connectionist simulations of language learning can
be viewed as empirical tests of learnability claims” (p. 385). While simple recurrent neural networks
of the 1990s did not quite live up to that promise, the successes of modern language models have
been put forward as conclusive evidence against strong learnability claims (see also Baroni, 2022,
for a review of similar claims from computational linguists):

“The rise and success of large language models undermines virtually every strong claim for
the innateness of language that has been proposed by generative linguistics.” (Piantadosi,
2023, 1)

“[Language] models provide an existence proof that the ability to produce grammatical
language can be learned from exposure alone without language-specific computations or
representations.” (Contreras Kallens et al., 2023, 6)

“The best present-day LLMs [large language models] clearly have substantial compe-
tence… [They] induce the causal structure of language from purely distributional train-
ing.” (Potts, 2023, 19).

Insofar as they can learn structure from strings, modern language models do plausibly under-
mine strong in-principle learnability claims. This does not entail, however, that they actually learn
language like humans do, or even that they could do so in a learning environment comparable to
those children are immersed in. For language models to constrain hypotheses about human language
acquisition and challenge linguistic nativism beyond strong learnability claims, we need additional
evidence from experiments that carefully control learning parameters based on developmental con-
siderations.

4.3 Language models as model learners
There are two major criticisms of the viability of language models as models of language acquisition.
The first has to do with the hypothesis that as statistical models with weak inductive biases, lan-
guage models can learn and process both natural and “impossible” languages with equal proficiency
(Moro et al., 2023; Chomsky et al., 2023). Impossible languages, in this context, refer to linguistic
structures that allegedly violate fundamental principles of human language, such as hierarchical
organization and recursion – properties believed to be innate to the human language faculty by
generative linguists (Moro, 2016). Mitchell and Bowers (2020) showed that RNNs could successfully
learn and perform well on subject-verb agreement tasks in impossible languages, including those
with reversed word order, repeated tokens, and even randomly shuffled sentences. These findings
suggest that neural language models can indeed acquire and process linguistic structures that are
considered impossible for human learners. This ability to handle both possible and impossible lin-
guistic structures without distinction is seen by generative linguists as evidence that language models
lack the intrinsic constraints that shape human linguistic competence and guide natural language
acquisition.

However, recent work by Kallini et al. (2024) challenges this criticism. Their experiments with
GPT-2 models on a spectrum of impossible languages showed that these models do not learn impos-
sible languages as efficiently as natural ones. They found clear distinctions in model perplexities,
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with models trained on nondeterministic sentence shuffles performing worst, followed by determinis-
tic shuffles and local shuffles. By contrast, models trained on unshuffled English consistently achieved
the lowest perplexities. Furthermore, their analysis showed that GPT-2 models preferred natural
grammar rules and developed human-like solutions even for non-human patterns. This suggest that
Transformer-based language models may in fact have inductive biases that favour natural language
structures, and that we should not rule out their relevance to debates on language acquisition on
the grounds that they learn impossible languages with equal facility.

The other major criticism of the relevance of language models to theories of language acquisition
is the discrepancy that typically exists between their learning conditions and those of actual children.
Most strikingly, state-of-the-art language models like GPT-3 and GPT-4 learn from an inordinate
amount of data – hundred of billions to trillions of words, representing a gap of four to five orders of
magnitude with the estimated language input of human children (Frank, 2023b; Wilcox et al., 2024).
This seriously undermines the relevance of large language models to debates about human language
acquisition.

One of the main empirical arguments in favour of linguistic nativism is the so-called “poverty of
the stimulus” (PoS) argument (Chomsky, 1965; Berwick et al., 2011; Pearl, 2022). At the heart of
PoS is an induction problem: linguistic input data available to children seem insufficient, on their
own, to allow them to acquire the correct linguistic generalization about the underlying structures
within a large hypothesis space. Yet developmental evidence suggests that children make constrained
generalizations to the correct hypotheses quickly and uniformly across languages. This has led
generative linguists to conclude that children must have some innate knowledge that allows them to
bridge the gap between their limited input data and linguistic generalizations.

The extent to which children’s linguistic stimulus is as impoverished as PoS assumes is debated
(Pullum and Scholz, 2002; Clark and Lappin, 2010; Chater et al., 2015). There is also some notable
variance in the quantity and quality of input received by children in different cultural and socioeco-
nomic environments (Huttenlocher et al., 2002; Huang et al., 2017; Bergelson et al., 2019; Cristia
et al., 2019). Estimates of infant speech exposure range from as little as one hour to as much as
3,300 hours of speech per year, which reflects uncertainties about what constitutes meaningful input,
cultural variations in child-directed speech, and the impact of factors like background noise (Coffey
et al., 2024). Nonetheless, one thing is certain: in order to challenge the claim that innate knowledge
is required to solve the induction problem of language learning, artificial model learners need to be
trained on a realistic amount of data.

It should be noted that the input data and learning process of large language models differ
from those of children in several ways beyond mere data quantity. Firstly, while children learn
primarily through speech in interactive social contexts, language models typically learn from static
text corpora.13 In particular, children receive immediate feedback and corrections during their
language learning process, allowing them to adjust their understanding based on communicative
goals. Secondly, children learn within a rich multimodal environment, where language is grounded
in sensorimotor experiences, perception, and social interaction; most language models, by contrast,
learn from text cues alone. Thirdly, the content and structure of the linguistic data differ significantly.
Child-directed speech, often simplified and contextualized, contrasts sharply with the diverse and
complex datasets language models are trained on, which include sources such as Wikipedia, books,
web pages. In addition, state-of-the-art language models are trained not just on natural language,
but also on substantial amounts of computer code, which has no equivalent in a child’s linguistic

13It should be noted that speech language models are increasingly prevalent, suggesting that deep neural networks
can effectively learn syntax from speech rather than tokenized written text (Lakhotia et al., 2021; Beguš et al., 2024).

27



experience.
Carefully controlling these variables to select and train better model learners could in principle

constrain hypotheses regarding the necessary and sufficient conditions for language learning in hu-
mans (Warstadt and Bowman, 2022; Pearl, 2023; Connell and Lynott, 2024). Results obtained from
models whose learning scenarios more closely match hypotheses about human learning are more
likely to generalize to real human learners. That said, not all discrepancies in learning conditions
are problematic, particularly in cases where artificial learners are at a disadvantage compared to
humans (e.g., by lacking access to multimodal input). If models can still learn the target linguistic
knowledge in spite of the disadvantage, then a fortiori humans should be able to learn it without
the disadvantage. It is far harder to establish negative results: just because a language model fails
to learn some target knowledge does not mean that humans cannot either.

A growing number of studies set out to test language models in more human-like conditions,
mainly by limiting the amount of data they are trained on to a developmentally plausible quantity,
and making their content more similar to child-directed speech. Table 1 summarizes the main
findings from recent studies investigating the learnability of various linguistic phenomena in language
models trained on developmentally plausible data.

Linguistic phenomena tested Implication Reference
Various syntactic and semantic features Moderately

positive
Zhang et al. (2020)

Syntactic categories, semantic categories,
determiner-noun agreement, verb argument structure

Moderately
positive

Wang et al. (2023)

Filler-gap dependencies and island constraints Positive Wilcox et al. (2023)
General linguistic knowledge Positive Samuel et al. (2023)
Generation of coherent and grammatically correct text Positive Eldan and Li (2023)
Question formation and passivisation Moderately

positive
Mueller and Linzen
(2023)

Subject-verb agreement, wh-questions, relative clauses Moderately
positive

Evanson et al. (2023)

Formation of yes/no questions Negative Yedetore et al. (2023)
Article+Adjective+Numeral+Noun construction Positive Misra and Mahowald

(2024)
Exceptions to passivisation Moderately

positive
Leong and Linzen
(2024)

Table 1: Overview of studies investigating the learnability of various linguistic phenomena in small
language models trained on a developmentally plausible amount of data. The “Implication” col-
umn indicates whether each paper’s findings generally support the learnability of the corresponding
phenomenon.

Zhang et al. (2020) investigated how much pretraining data is needed for language models to
acquire linguistic knowledge by probing RoBERTa models trained on varying amounts of data (1M
to 30B words). Using multiple probing methods including classifier probing, minimum description
length probing, and unsupervised grammaticality judgments on BLiMP, they found that most syn-
tactic and semantic features can be learned with only 10-100M words of pretraining data. However,
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performance on downstream natural language understanding tasks continued to improve with bil-
lions of words, suggesting that skills beyond basic linguistic knowledge are required for these tasks
and take much more data to acquire.

In the same vein, Samuel et al. (2023) trained BERT-like models on the 100-million-word British
National Corpus and evaluated them using a variety of linguistic probing tasks, downstream NLP
benchmarks, and BLiMP. Their models outperformed the original BERT trained on 3.3 billion
words, suggesting that carefully curated smaller datasets can be more effective than larger web-
crawled corpora. They also found that models trained on the British National Corpus substantially
outperformed those trained on a random 100-million-word subset of Wikipedia and books, confirming
the importance of data quality over quantity.

Wang et al. (2023) trained models on a subset of linguistic input from a single child’s first two
years, using transcripts of child-directed speech from a head-mounted camera. Even with this lim-
ited data, networks learned to differentiate syntactic categories (e.g., nouns vs. verbs) and semantic
categories (e.g., animals vs. clothing), and showed some sensitivity to linguistic phenomena like
determiner-noun agreement. However, the networks struggled with more complex phenomena re-
quiring longer-distance dependencies, such as subject-verb agreement. Adding visual information
provided only incremental improvements in word prediction, especially concrete nouns, without fun-
damentally altering the linguistic representations. In follow-up work, Qin et al. (2024) trained six
different neural network architectures (including LSTMs and Transformers) on five datasets, includ-
ing three single-child linguistic input corpora and two baseline corpora. They evaluated the models
using linguistic acceptability tests, visualizations of word embeddings, and cloze tests, finding that
models trained on single-child datasets consistently learned to distinguish syntactic and semantic
categories and showed sensitivity to certain linguistic phenomena, performing similarly to models
trained on larger aggregated datasets.

Mueller and Linzen (2023) assessed how pre-training data and model architecture affect the emer-
gence of syntactic inductive biases in Transformer language models. They fine-tuned models on syn-
tactic transformation tasks (question formation and passivisation) and evaluated out-of-distribution
generalization to test for hierarchical vs. linear rule learning. They found that model depth was more
important than width or total parameter count for acquiring hierarchical biases. Additionally, they
showed that pre-training on simpler language like child-directed speech (5M words) induced stronger
syntactic biases than pre-training on much larger amounts (up to 1B words) of more complex text
like Wikipedia or web crawl data.

Wilcox et al. (2023) tested whether language models – including RNNs and Transformers –
could learn English filler-gap dependencies and island constraints. They found that models trained
on corpora as small as 90 million words could acquire not only basic filler-gap dependencies, but
also their hierarchical restrictions, unboundedness, and most island constraints.

Eldan and Li (2023) generated a dataset of short children stories containing only words that a
typical three to four year-old child would understand. After training very small language models
(under 10 million parameters) on this dataset, they found that these models could produce fluent,
consistent, and diverse stories with good grammar and some reasoning ability.

Looking at learning dynamics across model learners and humans can also yield some insights.
Evanson et al. (2023) trained 48 GPT-2 models from scratch on a small dataset of Wikipedia
articles and evaluated their linguistic abilities using 96 probes from established benchmarks at regular
intervals during training. They found that the models learned linguistic skills in a consistent order
across random seeds, with learning occurring in parallel but at different rates for different skills.
Comparing a subset of syntactic probes to data from 54 children aged 18 months to 6 years, they
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observed that the order of acquisition for simple sentences, wh-questions, and relative clauses was the
same in the models as in children, though the models relied more on heuristics than true syntactic
understanding for the most complex structures.

Ongoing efforts such as the BabyLM Challenge (Warstadt et al., 2023, 2024) are bringing more
evidence to bear on whether language models trained on child-directed speech can learn syntax as
efficiently as actual human children without built-in syntactic knowledge. The BabyLM Challenge
was explicitly designed to incentivize research on sample-efficient language model pretraining using
developmentally plausible data. Participants were tasked with training language models on a corpus
constructed to mimic the linguistic input available to a child by early adolescence. The first chal-
lenge included three tracks: Strict and Strict-Small, which required using only the provided dataset
of 100M and 10M words respectively, and Loose, which allowed additional non-linguistic data. The
training corpus was carefully curated to include child-directed speech, transcribed dialogues, chil-
dren’s books, and other age-appropriate texts. Models were evaluated on a range of tasks including
syntactic judgment (BLiMP), natural language understanding (GLUE), and generalization ability
(MSGS).

The top-performing submissions to first BabyLM challenge achieved results comparable to much
larger language models on certain tasks (Wilcox et al., 2024). For instance, the best-performing
model in the Strict track, achieved scores on the BLiMP syntactic judgment task that were only about
3% below human-level performance and comparable to models trained on orders of magnitude more
data (Charpentier and Samuel, 2023). In terms of strategy, architectural tweaks proved to be more
impactful, with models based on the LTG-BERT architecture from Samuel et al. (2023) performing
particularly well. Interestingly, curriculum learning – learning in a specific order – generally showed
only marginal improvements over baselines, challenging common assumptions about the benefits of
structured learning for language models in limited data scenarios.

Beyond training language models on more developmentally plausible data, Warstadt and Bowman
(2022) suggest that specific features of the model’s learning conditions could be purposefully removed
(or “ablated”) to test whether they are really needed for learning. For example, one could remove
all triply nested sentences from the training data, to test if this input is necessary for the model
to acquire knowledge of subject-verb number agreement in deeply embedded clauses. If the model
succeeds in acquiring the target knowledge despite lacking the ablated advantage, it provides an
existence proof that the knowledge is learnable without it. By manipulating model assumptions
and training data, we can test which conditions are actually required for human-like learning of
linguistic rules and generalizations. We can also analyse the internal representations that evolve to
support model behaviour in plausible learning scenarios through causal interventions, to constrain
hypotheses about representations subserving linguistic competence in humans.

Leong and Linzen (2024) provide a good illustration of this strategy. Using targeted interventions
on the training data of small language models, they test specific hypotheses about the sources of
evidence learners might use to learn exceptions to passivisation (e.g. “The meeting lasted one hour”
vs “*One hour was lasted by the meeting”). By manipulating factors like the frequency of verbs in
passive constructions or the semantic contexts in which verbs appear, they were able to isolate and
test the causal role of different types of indirect evidence in the learning process. This methodology
addresses a major limitation of naturalistic studies of language acquisition, where it is extremely
difficult to control or measure a child’s exact linguistic input. Their findings suggest that the relative
frequency of verbs in active versus passive constructions plays a significant role in how language
models learn passive exceptions, while manipulations of lexical semantics had less consistent effects.
Importantly, they found that frequency alone could not fully account for the models’ judgments,
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indicating that other sources of evidence are likely involved. Their findings also show how language
models can learn to make graded acceptability judgments that correlate well with human intuitions,
even for subtle linguistic phenomena.

Similarly, Patil et al. (2024) trained language models on corpora with specific linguistic con-
structions filtered out to test generalization from indirect evidence. They applied this method to
both LSTM and Transformer models across a wide range of linguistic phenomena evaluated by the
BLiMP benchmark. Their results showed that while Transformers achieved lower perplexity, both
model types performed equally well on linguistic generalization measures, with relatively small im-
pacts from filtering in most cases. This provide further evidence that language models are capable of
forming sophisticated linguistic generalizations even without direct exposure to certain constructions
during training.

Misra and Mahowald (2024) used a similar strategy to investigate whether language models
trained on a 100-million-word corpus could learn the rare Article-Adjective-Numeral-Noun (AANN)
construction in English. They systematically manipulated the training corpus by removing AANNs
and related constructions, then evaluated models on novel AANN instances. They found that models
could generalize to unseen AANNs even without exposure to any during training, likely by leveraging
related frequent constructions. Additionally, they showed that models exposed to more diverse
AANN instances during training showed better generalization, highlighting the importance of input
variability in learning rare phenomena.

While these results mostly point to challenges for nativist views, some experiments with model
learners in plausible learning scenarios found less positive results. For example, Yedetore et al.
(2023) trained LSTM and Transformer models on child-directed speech from the CHILDES corpus
(9.6 million words) to test whether they could learn the hierarchical structure of English yes/no
questions. They evaluated the models using forced-choice acceptability judgments and a question
formation task, finding that both model types failed to acquire the correct hierarchical rule. Instead,
the models tended to generalize based on linear order or lexical specificity, even when pre-trained
on next-word prediction. These results suggest that stronger constraints might be needed to induce
hierarchical syntax from the realistic input children receive.

To shed further light on this question, McCoy and Griffiths (2023) used a technique called induc-
tive bias distillation to endow a neural network with the strong inductive biases of a Bayesian model.
The resulting network exhibited data efficiency comparable to the Bayesian model in learning new
formal languages from few examples, but was also able to effectively learn aspects of English syntax
from a naturalistic corpus of child-directed speech. Notably, it outperformed standard neural net-
works on targeted evaluations of syntactic phenomena like dependencies, agreement, and reflexives.
Thus, neural networks can learn meaningful generalizations given suitable inductive biases, although
the biases of vanilla architectures might not be sufficient to model language acquisition adequately.

This does not entail that good model learners should be endowed with the kind of language-
specific inductive biases that generative linguists deem necessary for language acquisition. In fact,
it is not clear that such strong biases would lead to better learning. An interesting study by Pa-
padimitriou and Jurafsky (2023) investigated which structural biases allow Transformers to achieve
excellent performance on natural language modelling without explicit syntactic supervision. By pre-
training Transformers on artificial languages exhibiting specific structures like recursion or context-
sensitivity before fine-tuning on English text, they were able to manipulate the models’ inductive
biases in a controlled fashion. They found that both recursive and non-recursive structural biases im-
prove English learning over a random baseline, with context-sensitivity providing the best inductive
bias over constituency recursion. These results show that that Transformers can acquire languages
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beyond finite-state regular grammars given appropriate inductive biases, without restrictions to only
context-free or context-sensitive languages. While not directly confirming claims about human lan-
guage acquisition, the finding that non-recursive dependencies aid learning better than recursion
challenges theories positing recursion as the core syntactic bias.

It is also worth emphasizing that modern deep neural network architectures are not tabulae
rasae, but have distinct inductive biases (Baroni, 2022). Models with different architectures trained
on the same data may generalize (or fail to generalize) in different ways. While vanilla LSTMs and
Transformers lack language-specific innate knowledge, they have more domain-general biases that go
a long way towards explaining their success (and limitations) on language modelling tasks. Their
ability to learn language in plausible learning scenarios may undermine linguistic nativist accounts of
PoS, but it does not necessarily undermine the idea that nontrivial inductive biases are required for
language to be acquired. As such, it is quite natural for moderate nativists and moderate empiricists
to meet somewhere in the middle.14

Overall, the work reviewed in this section lends plausibility to the claim that language models
trained in more realistic learning scenario could in principle constrain theorizing about language
acquisition, and particularly PoS-style arguments for particular syntactic phenomena. While there
certainly remains significant differences between the mechanisms and conditions in which language
models learn compared to human children, the cognitive plausibility of model learners should be
viewed as a graded concept, evaluated comparatively across specific several dimensions, rather than
as a binary property that models either possess or lack (Beinborn and Hollenstein, 2024). For now,
however, the claim that language models refute Chomsky’s approach to language (Piantadosi, 2023)
remains somewhat premature. Strong learnability claims do not hold up very well to scrutiny, but
evidence from model learners against weaker nativist claims is still tentative.

4.4 Language models as scientific models
Deep neural networks are increasingly treated as promising computational models of human cog-
nition in various domains, including vision science (Cichy and Kaiser, 2019; Doerig et al., 2023).
However, the status of neural networks as scientific models is controversial. One common view is
that predictive performance on benchmarks is insufficient for neural networks to be scientifically ad-
equate explanations of a target cognitive phenomenon (Wichmann and Geirhos, 2023). Theoretical
linguistics, particularly in the generative tradition, tends to favour explanation over prediction. On
this view, linguistic explanation aims to provide deep, abstract accounts of linguistic phenomena,
often focusing on competence rather than performance. Prediction, on the other hand, involves
using models to forecast linguistic behaviour or patterns, often based on statistical approaches.

There are reasons to question this sharp dichotomy. As Egré (2015) emphasizes, prediction
is equally applicable in linguistics as in other empirical sciences, and any non-trivial descriptive
generalization in linguistics will be predictive if testable on new cases. Nefdt (2024) goes further,
arguing that prediction is essential for scientific explanation in linguistics, and that computational
approaches focused on prediction can offer valuable insights into theoretical questions. He suggests

14Many proponents of universal grammar agree that innate knowledge is not sufficient to explain language acquisition.
Statistical learning is an important component of “innately guided learning”, where universal grammar may constrain
which statistical cues the learner should attend to (Yang, 2004; Pearl, 2021; Dupre, 2021a). One key disagreement,
however, is whether the innate component of language learning (i.e., inductive biases) should be domain-general of
language-specific (Clark, 2015; Chater et al., 2015). Insofar as vanilla language model architectures do not have
language-specific inductive biases, their tentative success in realistic learning scenarios may count as evidence against
a strongly modular language faculty as postulated by Chomsky.
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that the neglect of prediction stems partly from historical reactions against logical positivism and
partly from the “Galilean style” in generative linguistics that emphasizes abstract explanation over
empirical adequacy. The integration of predictive models, such as deep neural networks, into theo-
retical linguistics is a way to bridge this divide.

On the opposite end of the spectrum, some have argued that language models should not only
be treated as bona fide linguistic theories, but as the best ones we have (Piantadosi, 2023; Ambridge
and Blything, 2024). For example, Baroni (2022) argues that language models can be viewed as
algorithmic theories making linguistic predictions. Specifically, he proposes to view an untrained
language model as equivalent to a theory defining a space of possible grammars; that space will
look quite different depending on model architecture (e.g., LSTMs vs. Transformers) and parameter
count. After training on language-specific data, the model can be viewed as a grammar – a system
that can predict whether any sequence is acceptable to an idealised speaker of the language. For
this framing to be viable, however, Baroni emphasises that the selection of model architecture
in experiments must be linguistically-motivated, and that a greater mechanistic understanding of
trained models is needed. Ultimately, the field could move beyond testing language models on well-
known patterns such as subject-verb number agreement, to using them to make prediction about
previously unexplored patterns. In particular, they seem apt to model fuzzy and probabilistic aspects
of language better than elegantly concise linguistic theories focused on algebraic recursion.

One key issue with this proposal is whether the notorious opacity of neural networks, including
language models, should be seen as a fundamental impediment to their ability to generate scientific
explanations. Explanatory models in cognitive science often take the form of mathematical or com-
putational models that encode theoretical constructs and hypotheses about mechanisms (Forstmann
and Wagenmakers, 2015). From this perspective, the lack of simplicity, transparency, and theoretical
grounding of deep neural networks appears to undermine them as explanatory models. In the lin-
guistic domain, language models do not compare favourably with respect to these particular criteria
to the kind of minimal and interpretable models provided by generative grammar.

However, this view rests on controversial assumptions in the philosophy of science about desider-
ata for explanatory models. For example, Sullivan (2022) argues that implementational opacity need
not be an impediment for neural networks to provide understanding of real-world phenomena. One
does not need to fully understand the model itself in order to use it to understand its target. Rather,
it is uncertainty about whether models accurately represent real systems – called link uncertainty
– that prominently hinders understanding. Links between models and target phenomena can be
strengthened through rigorous scientific validation providing empirical evidence that opaque model
mechanisms reflect real causal dependencies. One can see ongoing research on language models in
computational linguistics as progressing in that direction.

Whether reducing link uncertainty between opaque neural network models and target phenomena
is sufficient to provide genuine explanatory understanding is debated. A more stringent requirement
would include some understanding of the model itself – that is, reducing model opacity in addition
to link uncertainty (Räz and Beisbart, 2022). A common motivation for this requirement is the
suspicion that deep neural networks might rely on spurious correlations even if they appear to
capture genuine dependencies in their explanatory target. However, research using causal methods
and mechanistic interpretability techniques (Section 3.3) is making headway in understanding how
language models learn and represent linguistic features.

Another important aspect of scientific models is that they allow for surrogative reasoning about
their explanatory targets; that is, studying the model itself allows researchers to draw inferences
about the target system (Nguyen and Frigg, 2022). Surrogative reasoning is what allows scientists
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to gain knowledge about real-world systems by investigating simplified or idealized model systems.
The use of language models as model learners (Section 4.3) is an example of surrogative reasoning; it
allows computational linguists to draw inferences about the relative importance of various inductive
biases and properties of the learning environment for human language acquisition.

These considerations provide tentative support against a merely instrumentalist view of lan-
guage models, on which they should only be as viewed tools for prediction rather than models for
explanation (Katzir, 2023). The case for viewing language models as explanatory models is perhaps
strongest for the study of language acquisition with artificial learners, where the models’ parameters
and environment are carefully controlled and informed by developmental psycholinguistics. The case
for language models as scientific models of adult linguistic competence is perhaps more controver-
sial, as it depends on aforementioned assumptions about the performance-competence gap (Dupre,
2021b). However, these two projects are not orthogonal; if experiments with artificial model learners
undermine linguistic nativism, this might in turn weaken the case for a wide gap between perfor-
mance and competence, and correspondingly increase the relevance of language models to arbitrate
hypotheses about linguistic competence.

At the very least, language models designed and trained with cognitive and developmental plausi-
bility in mind could in principle furnish how-possibly explanations of aspects of language acquisition
or linguistic competence. How-possibly explanations are possible explanations of a phenomenon
under certain plausibility constraints (Bokulich, 2014). Scientific models can provide evidence for
how-possibly explanations by supporting judgments about the possibility of explanatory relation-
ships (Verreault-Julien, 2019). Importantly, this allows highly idealized models to still contribute to
how-possibly explanations about real-world possibilities. The extent to which language models can
support such explanations of language acquisition or linguistic competence arguably depends both on
their cognitive plausibility and on their interpretability. Ongoing efforts to develop more cognitively
plausible language models and interpret their computational structure through causal interventions
show promise in fulfilling that vision. Unlike just-so stories, how-possibly explanations can provide
a path to scientific understanding through further investigation. For example, some how-possibly
explanations of the learnability of specific syntactic features provided by language models in con-
trolled learning scenarios could in principle be put to the test in developmental psycholinguistics –
or at least be evaluated against available cross-cultural evidence. Conversely, nativist claims about
the learnability of specific constructions from sparse stimulus can be challenged by how-possibly
explanations derived from experiments with language models.

While principled research on language models might weaken or constrain some PoS arguments,
it’s important to note that it doesn’t necessarily undermine all motivations for traditional linguistic
theories. Generative approaches like Minimalist syntax are not solely justified by learnability consid-
erations, but also by their ability to provide elegant explanations for specific linguistic phenomena
across languages. For instance, the presence of expletive subjects in English sentences like “It’s rain-
ing” or “There is a cat in the garden” has been accounted for through principles of case theory and
the Extended Projection Principle (EPP) (Chomsky, 1995).15 Case theory explains why expletives
are necessary in certain constructions to satisfy case requirements, while the EPP stipulates that
all clauses must have subjects. While a language model trained on English text might correctly
produce such sentences, this alone doesn’t explain why English requires expletive subjects in these
contexts in the same way that traditional linguistic theories do. This highlights a crucial distinc-
tion between prediction and explanation in linguistics. For language models to truly challenge or
replace traditional linguistic theories, they would need to offer comparably insightful explanations

15I am grateful to Gabe Dupre for suggesting that example.
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for the cross-linguistic patterns and constraints that motivate these theories. This presents an im-
portant challenge and opportunity for researchers working on language models: to develop methods
for extracting explanatory principles from these models that can account for linguistic phenomena
in ways that rival or surpass traditional theoretical approaches. Such efforts could significantly
enrich debates about the nature of linguistic explanation and potentially bridge the gap between
computational and theoretical linguistics.

5 Conclusion
Artificial neural networks have come a long way since the much-maligned connectionist models of
yore. In the linguistic domain, modern language models based on deep neural network architectures
have achieved vastly more success on virtually any natural language processing task than symbolic
models ever did. This progress calls for an honest reappraisal of the relevance of artificial neural
networks to linguistics. Given their predictive learning objective, it is often assumed that language
models are limited to capturing human linguistic performance. There are, however, good reasons
to think they can be used to model key aspects of language competence and acquisition. This
requires careful experiments where every variable – from model choice to task design – is informed
by linguistic theory.

Ongoing research on language models in computational linguistics has frayed a path forward,
providing a wealth of empirical evidence about the linguistic abilities of neural networks, including
those trained on a realistic amount of linguistic input. These results suggest that language models
do acquire sophisticated linguistic knowledge and are sensitive to hierarchical syntactic structure
beyond surface heuristics. Although this line of research has been largely ignored in mainstream
theoretical linguistics, it is increasingly plausible that it could yield insights about linguistic compe-
tence and language acquisition that could constrain hypotheses about the human case. This calls for
a closer collaboration between linguists and neural network researchers that does not merely cater
to engineering goals.16
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